

Typesetting Interlinear Text Page 1 of 6
Martin Hosken June 13, 2000 Rev: 5

Typesetting Interlinear Text
An Interlinear text to RTF converter
Martin Hosken,
SIL Non-Roman Script Initiative (NRSI)

Introduction
The laying out and typesetting of interlinear text is one of the more problematic aspects of
linguistics. It has been one that I have been addressing, on and off, for quite a few years, and have
only really seen any success now. This program is designed to aid with that task by automating
the process of converting interlinear text, held in Shoebox, into RTF for inclusion in a Word
document. There are actually two programs as part of this system. The first converts the
interlinear text into an intermediate form of standard format and the second is an enhanced
Shoebox Standard Format to RTF converter.

This paper will discuss the installation and use of the programs and then go on to a discussion of
the complexity of the interlinear typesetting problem and the approach taken in this system. This
may be of use for those pushing the extremes of interlinearising.

One pre-requisite is that users have a program for handling .tar.gz files on their system. WinZip
is amply sufficient for the task, as are many of the modern zip handling type programs. You will
also need a 32-bit Windows environment with support for long filenames.

Installation
The software is written in Perl, an interpretted language designed with text processing and system
interaction in mind. This section will lead you through installing Perl, pmake and then the
interlinear processing system.

Installing Perl
The company ActiveState have helped the Perl user community greatly by producing a very nice
installation kit for Perl. It is free, and it is called: ActivePerl. It is available from their website:
http://www.activestate.com/ActivePerl. Download the installation kit and run it to install Perl.
Feel free to follow the defaults, unless you have other plans.

A basic Perl installation takes up about 30Mb, with most of it being support libraries, and help
files.

Typesetting Interlinear Text Page 2 of 6
Martin Hosken June 13, 2000 Rev: 5

Installing the Interlinear system
Installing the interlinear system is not difficult. You extract everything from a .tar.gz file, run
perl Makefile.PL, run pmake install. The instructions are in the readme.txt file, but we will
include them here:

• Open the installation file using WinZip, or the like.

• Extract the files into a temporary directory and open a DOS box (Command prompt) and
change to that directory

• Follow the instructions in the readme file, adjusting make to pmake:

o Type: perl Makefile.PL

o Type: pmake install

o Type: pmake realclean

This process will add various files to your Perl support libraries and also add two batch files to
your Perl binary directory (thus making them available in your PATH).

Notice that this whole installation process works across platforms. In the case of a Mac you
should be able to install by installing the CPAN module first and then dropping the .tar.gz file on
the install_me droplet. On Unix, you install as per above, but can use make instead of pmake.

Useage
In this section we examine how to use this typesetting system and give an example from the
Shoebox sample files.

The programs use knowledge of the database structure to work out what to do with each marker
in a database. For this reason, every program must be told where the appropriate Shoebox settings
directory is for this database. This is the directory in which the project file (.prj) is held which
you use when working with your interlinear database.

Processing an interlinear file to convert it to an intermediate .sfm format is straightforward. But
the conversion of that .sfm file to RTF needs a modicum of care. The RTF conversion process
uses the information in the database type file (.typ) to indicate how various markers should be
converted to styles in the final output. There are three things that need to be right about this
information, otherwise you may get some very odd looking output.

• Add a marker: _RTF with a marker name of _RTFONLY_ (case is important), which is used
by the system to pass pure RTF from the interlinear converter through to the output.

• Add a marker: _INT with a marker name of Interlinear Block. This should be a
paragraph marker. The marker name (and so style name) is unimportant and indicates the
name of the paragraph style used for interlinear text blocks.

• All the markers used in the interlinear process (e.g. \t, \m, \ps, etc.) should be set to be
character styles rather than paragraph. This is important to ensure that you don’t end up
with paragraph marks in the middle of the interlinear blocks.

Nearly all problems with garbage output are due to not following these instructions in the
database properties before converting to RTF.

Once the database type file is correct, we can start to process some data. There are two programs
used:

Typesetting Interlinear Text Page 3 of 6
Martin Hosken June 13, 2000 Rev: 5

shintr -s directory inputfile outputfile

which converts the inputfile interlinear database into a temporary outputfile ready for RTF
conversion. directory indicates where the Shoebox settings may be found (and so the database
type file). A quick summary help may be found by typing: shintr on its own.

The next process takes the temporary file from shintr and creates an RTF file from it:

sh_rtf -s directory inputfile outputfile

The command line is of the same structure as the other program. This takes the inputfile and
converts it to an outputfile in RTF format (so it would help for it to have a .rtf extension). The
data need not be output from shintr, but output from shintr must be processed using sh_rtf
rather than the normal RTF output from Shoebox, due to the enhancements provided in sh_rtf.

Walkthrough
The following is a walkthrough example based on the directory
...\Shoebox\Samples\Adapt\Adapt2b which contains an example database which we can play
with for output to RTF.

• Launch the .prj file (EngAdapt.prj) which will open the various databases involved in
this example.

• Go to Projects/Database Types... (from the Projects menu), and select the Interlinear
database type and press Modify...

• Click Add... and add a new marker: _INT with a field name of Interlinear Block. You
may leave everything else about the marker as you find it. Click Ok.

• Click Add... and add a new marker: _RTF with a field name of _RTFONLY_ (one word, all
in capitals and the underscore letter). Again, you may leave everything else as you find it.
Click Ok.

• For each of the markers: e, e1, e2, mb, ps, t repeat the following process:

o Click on the marker

o Press modify

o Press the Character radio button under Style to Export

o Press Ok.

• Press Ok to exit the database type properties dialog, and click Close to exit the database
types dialog.

• Exit Shoebox (File/Exit)

Now that we have set up the database type file for this project, we can convert interlinear data as
often as we want without having to go through that process again.

• Open a DOS box (Command Prompt) and change to the directory we are working in
(.../Shoebox/Samples/Adapt/Adapt2b)

• Type: shintr -s . mark14b.txt temp.sfm

• Type: sh_rtf -s . temp.sfm mark14b.rtf

• Type: start mark14b.rtf to start Word and open the RTF file.

Typesetting Interlinear Text Page 4 of 6
Martin Hosken June 13, 2000 Rev: 5

Assuming everything has gone to plan, you should see various blocks of interlinear text
interspersed with comments about the various rearrangement and generation rules used in the
example.

Approach Used
There are three main approaches used to rendering interlinear text in RTF. They are:

• Use monospaced fonts and use the monospacing to line things up

• Use tables with each interlinear element being a cell

• Use equation fields which allow the stacking of elements, with each interlinear block
appearing as one letter.

We use the latter approach in this system for the following reasons:

• The interlinear blocks automatically wrap without having to measure any widths.

• They are much more manipulable when laying out text.

• They can be used within tables (as opposed to being tables in their own right)

Therefore, if you were to click in the example, on any interlinear element, the whole block would
select, but just the one block. Also, if you were to change the viewing options to show field
codes, you would see a horrific mess, which is the underlying work that the interlinear converter
has done for you. Perhaps it would be better to switch back to normal view fairly smartly!

Problems
Due to a bug in Word1, whereby it is not possible to store commas or parentheses in an EQ field
(despite help’s instructions to the contrary), shintr deletes any commas and parentheses it finds.
You may indicate that it should not do this by using the -c option, whereupon, if you are not
using Word 2000, all the commas and parentheses should reappear, hopefully not messing up the
layout.

If you look carefully at the example output, for example under the word de in the first paragraph,
you will see that a whole phrase has been rendered under one word rather than across the whole
phrase. While this is not ideal, it is an artifact of the way that EQ fields work and the complexity
of phrase level interlinear conversion, a subject we will address in a later section.

Advanced Useage
In this section we look at the various ways in which the tools we have discussed may be
configured.

shintr
shintr has various command line options to control such things as inter-column spacing between
interlinear blocks and inter-line spacing between the elements in a block. Both of these values are

1 I have only seen this bug in Word 2000.

Typesetting Interlinear Text Page 5 of 6
Martin Hosken June 13, 2000 Rev: 5

specified as an integer value of points (1/72 of an inch). The defaults are given, but may be
overridden using the command line options -h and -l respectively. Thus, the command line:

shintr -h6 -l 8 -s. inputfile outputfile

does nothing beyond the normal. Notice that command line options can have space between the
option and the value, or not. It is unimportant.

shintr also allows for various markers to be ignored (so that you only display the interlinear
lines of interest). This is done using the -x option which is followed by a list of markers
separated by any non-word forming characters (commas will do!)

sh_rtf
sh_rtf is a powerful program for converting Shoebox data into RTF. It emulates the Shoebox
output process and enhances it in a couple of areas.

The primary enhancement, apart from the magic style _RTFONLY_, is to provide some rudimentary
support for tables. There are two ways in which this is done. The first is that if there is a style
called Free Translation as well as Interlinear Block then if you use the -c option you can
specify the width of the free translation column, which will appear as column two, and the width
of column 1 for the interlinear block will be set such that the total table width is 7".

The second approach is to embed extra styling information into the marker specification. Since
Shoebox merrily ignores and removes any markers it does not understand in a database type file,
we embed the information in the marker description. Embedded information is stored in the
description in the form of XML empty tags. For example, to indicate which column of a table a
marker’s paragraph should be inserted into, add the following to the description:

<col num="number"/>

2 other tags are also required to help in the specification:

<totalcols num="number"/>
<colwidths num="number, number, ..."/>

totalcols indicates the number of columns in the table. This is necessary so that for any
particular column, the converter can work out what to do at the end of the cell, whether this is the
end of a row, and whether and how many blank cells to insert if intervening cells are not filled.

colwidths is also needed for every marker in a table. It specifies the width (in floating point
inches) of all the columns. Again this is needed in case the column we are on has to start a new
table. Since the styles are not linked, all the information is needed for every column: that is,
assuming you cannot guarantee perfectly structured data.

Using this approach it should be possible to typeset interlinear text with diglot free translation and
intervening notes.

Other Options
Other options for sh_rtf are: -d allows the user to specify a document template that this
document should attach to and update styles from on loading into Word. If you need to use SDF,
then the -p option is used to specify the directory to find the render.dll in. This is an
experimental feature and you will need the Win32::API module for anything to hope to work!

Typesetting Interlinear Text Page 6 of 6
Martin Hosken June 13, 2000 Rev: 5

Interlinear Text
This section is a long and somewhat involved explanation of why shintr works the way it does.
It is of only ancillary interest and may be skipped.

Interlinear text is fun stuff. The traditional approach to interlinearising is that the root of an
interlinear block is a root word in the source language. This is then transformed into each of the
forms on each line. The relationship between the transformations is such that the transformation
path back to the root is such that a tree may be formed with no overlapping branches. If we
compare the hierarchy of transformations along with the lines on which they occur, we find that
we have a clean tree. There is the need for an agreement between the order in which interlinear
lines are rendered and the transformational hierarchy of the interlineariser.

It is this relationshipe between hierarchies that a tool such as shintr has to address and resolve.
Technologies such as EQ fields in Word, or XML, require data to be in a hierarchy. And if it is
also necessary to keep line ordering, then the two hierarchies need to be resolved in some way.
And for the most part, for normal interlinearising, rather than analysis and generation, such a
model is perfectly sufficient (especially if care is taken over the order of the lines in the
interlinear block).

Shoebox uses a different model. Rather than seeing each interlinear element as a node in a
transformation tree, it sees each transformation as its own independent transformation from one
line to another, without any relationship to any other transformation. This is a highly flexible
approach allowing lines to be in any order.

Apart from the line ordering problem, the two models were easy to integrate for Shoebox versions
1-3 where only single word analysis was possible. With the advent of Shoebox 4, things became
much more complicated due to the ability to do string to string mapping in addition to word to
word mapping. The result is that we can no longer say that there is any root upon which a
hierarchy may be built. The relationship between how the word in a line is generated becomes
divorced from the generation of a word on another line from that word. For example, a string
which is used as a single node in generating a subsequent line, may itself be made up of multiple
nodes in its creation.

The tying of branches together, in this way, is another way in which the hierarchy is broken. Thus
we have two ways in which the hierarchy can be broken and which such a tool as shintr must
resolve. The first (overlapping branches) is resolved by, effectively, making a lower branch a
child of the lowest common ancestor branch such that there is no overlap. This is not ideal, and
some line-up errors may occur, but at least the data is there, and with some careful re-ordering of
lines to be output, the problem can be resolved. The second problem (conflating branches by
string replacement) is resolved by making the string replacement relate to the first node in the
string in the hierarchy. Due to a technique of node conflation (nodes with no children and a
common parent are conflated into a previous node with the same parent with children), the results
are not as bad as might first be expected. But there are occasions, and the sample text is one of
them, where the problem is visually evident.

These problems could be resolved if true tables were used where cell widths can vary and even
cells be merged. The problem with a table based output approach is that it is necessary to measure
the width of strings in order to find out how wide the table is for each block and to split it
appropriately for line wrapping. On the other hand, EQ fields have the problem that Microsoft
really don’t want to have to support them, and so they will probably get more buggy as time goes
on. I’m sure the debate will run and run. In the meantime, I offer this humble tool to perhaps help
a few people along the way.

	Introduction
	Installation
	Installing Perl
	Installing the Interlinear system

	Useage
	Walkthrough

	Approach Used
	Problems

	Advanced Useage
	shintr
	sh_rtf
	Other Options

	Interlinear Text

