
1
DBD::Oracle

Version
This driver summary is forDBD::Oracle version 0.60.

Author and Contact Details
The driver author is Tim Bunce. He can be contacted via thedbi-usersmailing list.

Supported Database Versions and Options
TheDBD::Oracle module supports both Oracle 7 and Oracle 8.

Building for Oracle 8 defaults to use the new Oracle 8 OCI interface, which enables use
of some Oracle 8 features including LOBs and ‘‘INSERT. . . RETURNING . . . ’’.

An emulation module for the old Perl4 oraperl software is supplied withDBD::Oracle ,
making it very easy to upgradeoraperl scripts to Perl5.

Connect Syntax
TheDBI->connect() Data Source Name, orDSN, can be one of the following:

dbi:Oracle:tnsname
dbi:Oracle:sidname
dbi:Oracle:T:hostname:sidname

There are no driver specific attributes for theDBI->connect() method.

Numeric Data Handling

1

19 May 1999

2 DBD::Oracle

Oracle only has one flexible underlying numeric type, NUMBER. But Oracle does sup-
port several ANSI standard and IBM data type names as aliases, including:

INTEGER = NUMBER(38)
INT = NUMBER(38)
SMALLINT = NUMBER(38)
DECIMAL(p,s) = NUMBER(p,s)
NUMERIC(p,s) = NUMBER(p,s)
FLOAT = NUMBER
FLOAT(b) = NUMBER(p) where b is the binary precision, 1 to 126
REAL = NUMBER(18)

The NUMBER datatype stores positive and negative fixed and floating-point numbers
with magnitudes between 1.0 x 10-130 and 9.9 . . . 9 x 10125 (38 nines followed by 88
zeroes), with 38 digits of precision.

You can specify a fixed-point number using the following form:NUMBER(p,s) wheres is
the scale, or the number of digits to the right of the decimal point. The scale can range
from -84 to 127.

You can specify an integer usingNUMBER(p). This is a fixed-point number with precision
p and scale 0. This is equivalent toNUMBER(p,0).

You can specify a floating-point number using NUMBER. This is a floating-point number
with decimal precision 38. A scale value is not applicable for floating-point numbers.

DBD::Oracle always returns all numbers as strings. Thus the driver puts no restriction on
size of PRECISION or SCALE.

String Data Handling
Oracle supports the following string data types:

VARCHAR2(size)
NVARCHAR2(size)
CHAR
CHAR(size)
NCHAR
NCHAR(size)
RAW(size)

The RAW type is presented as hexadecimal characters. The contents are treated as non-
character binary data and thus are never ‘‘translated’’ by character set conversions.

CHAR types and the RAW type have a limit of 2000 bytes. For VARCHAR types the
limit is 2000 bytes in Oracle 7 and 4000 in Oracle 8.

The NVARCHAR2 and NCHAR variants hold string values of a defined national charac-
ter set (Oracle 8 only). For those types the maximum number of characters stored may be
lower when using multibyte character sets.

19 May 1999

The CHAR and NCHAR types are fixed length and blank padded.

Oracle automatically converts character data between the character set of the database
defined when the database was created and the character set of the client, defined by the
NLS_LANG parameter for the CHAR and VARCHAR2 types or the NLS_NCHAR
parameter for the NCHAR and NVARCHAR2 types.

CONVERT(string, dest_char_set, source_char_set)can be used to convert strings
between character sets. Oracle 8 supports 180 storage character sets. UTF-8 is supported.
See the National Language Support section of the Oracle Reference manual for more
details on character set issues.

Strings can be concatenated using either the|| operator or theCONCAT(s1,s2, . . .)

SQL function.

Date Data Handling
Oracle supports one flexible date/time data type: DATE. A DATE can have any value
from January 1, 4712 BC to December 31, 4712 AD with a one second resolution.

Oracle supports a very wide range of date formats and can use one of several calendars
(Arabic Hijrah, English Hijrah, Gregorian, Japanese Imperial, Persian, ROC Official
(Republic of China) and Thai Buddha). We’ll only consider the Gregorian calendar here.

The default output format for the DATE type is defined by the NLS_DATE_FORMAT
configuration parameter, but it’s typicallyDD-MON-YY, e.g., 20-FEB-99 in most western
installations. The default input format for the DATE type is the same as the output format.
Only that one format is recognised.

If you specify a DATE value without a time component, the default time is 00:00:00
(midnight). If you specify a DATE value without a date, the default date is the first day of
the current month. If a date format that has a two digit year, such as theYY in DD-MON-YY

(a common default) then the date returned is always in the current century. TheRRformat
can be used instead to provide a 50 year pivot.

The default date format is specified either explicitly with the initialization parameter
NLS_DATE_FORMAT or implicitly with the initialization parameter NLS_TERRI-
TORY. For information on these parameters, see Oracle8 Referencee.

You can change the default date format for your session with the ‘‘ALTER SESSION’’
command. For example:

ALTER SESSION SET NLS_DATE_FORMAT=’MM/DD/YYYY’

The TO_DATE() function can be used to parse a character string containg a date in a
known format. For example:

DBD::Oracle 3

19 May 1999

4 DBD::Oracle

UPDATE table SET date_field=TO_DATE(’1999-02-21’, ’YYYY-MM-DD’)

TheTO_CHAR() function can be used to format a date. For example:

SELECT TO_CHAR(SYSDATE, ’YYYY-MM-DD’) FROM DUAL

The current datetime is returned by theSYSDATE() function.

You can add numbers to DATE values. The number is interpreted as numbers of days; for
example,SYSDATE + 1 is this time tomorrow, andSYSDATE - (3/1140) is three minutes
ago. You can subtract two dates to find the difference, in days, between them.

Oracle provides a wide range of date functions includingROUND(), TRUNC(), NEXT_DAY(),
ADD_MONTHS(), LAST_DAY() (of the month), andMONTHS_BETWEEN().

The following SQL expression can be used to convert an integer ‘‘seconds since
1-jan-1970 GMT’’ value to the corresponding database date time:

to_date(trunc(:unixtime/86400, 0) + 2440588, ’J’) -- date part
+(mod(:unixtime,86400)/86400) -- time part

To do the reverse you can use:

(date_time_field - TO_DATE(’01-01-1970’,’DD-MM-YYYY’)) * 86400

Oracle does no automatic time zone adjustments. However it does provide aNEW_TIME()

function that calculates time zone adjustments for a range of time zones.NEW_TIME(d,

z1, z2) returns the date and time in time zonez2when the date and time in time zonez1
are represented byd.

LONG/BLOB Data Handling
Oracle supports these LONG/BLOB data types:

LONG - Character data of variable length
LONG RAW - Raw binary data of variable length
CLOB - A large object containing single-byte characters
NCLOB - A large object containing national character set data
BLOB - Binary large object
BFILE - Locator for external large binary file

The LONG types can hold upto 2 gigabytes. The other types (LOB and FILE) can hold
upto 4 gigabytes. The LOB and FILE types are only available when using Oracle 8 OCI.

The LONG RAW, and RAW, types are passed to and from the database as strings consist-
ing of pairs of hex digits.

The LongReadLenand LongTruncOkattributes work as defined. However, the Lon-
gReadLen attribute seems to be limited to 65535 bytes on most platforms when using
Oracle 7. BuildingDBD::Oracle with Oracle 8 OCI raises that limit to 4 gigabytes.

19 May 1999

The maximum length ofbind_param() parameter value that can be used to insert LONG
data seems to be limited to 65535 bytes on most platforms when using Oracle 7. Building
DBD::Oracle with Oracle 8 OCI raises that limit to 4 gigabytes.

The TYPE attribute value SQL_LONGVARCHAR indicates an Oracle LONG type. The
value SQL_LONGVARBINARY indicates an Oracle LONG RAW type. These values are
not always required but their use is strongly recommended.

No other special handling is required for LONG/BLOB data types. They can be treated
just like any other field when fetching or inserting etc.

Other Data Handling issues
TheDBD::Oracle driver supports thetype_info() method.

Oracle supports automatic conversions between data types wherever it’s reasonable.

Transactions, Isolation and Locking
DBD::Oracle supports transactions. The default transaction isolation level is ’Read Com-
mited’.

Oracle supports READ COMMITED and SERIALIZABLE isolation levels. The level be
changed per-transaction by executing aSET TRANSACTION ISOLATION LEVEL x statement
(wherex is the name of the isolation level required).

Oracle also supports transaction-level read consistency. This can be enabled by issuing a
SET TRANSACTION statement with the READ ONLY option.

In Oracle, the default behavior is that a lock never prevents other users from querying the
table. A query never places a lock on a table. Readers never block writers and writers
never block readers.

Rows returned by a SELECT statement can be locked to prevent them from being
changed by another transaction by appendingFOR UPDATEto the select statement. Option-
ally, you can specify a column list in parentheses after the FOR UPDATE clause.

The LOCK TABLE table_name IN lock_mode statement can be used to apply an explicit
lock on an entire table. A range of row and table locks are supported.

No-Table Expression Select Syntax

DBD::Oracle 5

19 May 1999

6 DBD::Oracle

To select a constant expression, that is, an expression that doesn’t inv olve data from a
database table or view, you can select from the DUAL table. For example,SELECT SYS-

DATE FROM DUAL.

Table Join Syntax
Oracle supports inner joins with the usual syntax:

SELECT * FROM a, b WHERE a.field = b.field

To write a query that performs an outer join of tables A and B and returns all rows from
A, the Oracle outer join operator (+) must be applied to all column names of B that
appear in the join condition. For example:

SELECT customer_name, order_date
FROM customers, orders
WHERE customers.cust_id = orders.cust_id (+);

For all rows in the customers table that have no matching rows in the orders table, Oracle
returns NULL for any select list expressions containing columns from the orders table.

Table and Column Names
The names of Oracle identifiers, such as tables and columns, cannot exceed 30 characters
in length.

The first character must be a letter, but the rest can be any combination of letters, numer-
als, dollar signs ($), pound signs (#), and underscores (_).

However, if an Oracle identifier is enclosed by double quotation marks ("), it can contain
any combination of legal characters including spaces but excluding quotation marks.

Oracle converts all identifiers to upper-case unless enclosed in double quotation marks.
National characters can also be used when identifiers are quoted.

Case Sensitivity of LIKE Operator
The Oracle LIKE operator is case sensitive.

TheUPPERfunction can be used to force a case insensitive match,e.g., UPPER(name) LIKE

’TOM%’ although that does prevent Oracle from making use of any index on the name col-
umn to speed up the query.

Row ID

19 May 1999

The Oracle ‘‘row id’’ pseudocolumn is called ROWID. Oracle ROWIDs look likeAAAAf-

SAABAAAClaAAA. It can be treated as a string and used to rapidly (re)select rows.

Automatic Key or Sequence Generation
Oracle supports ‘‘sequence generators’’. Any number of named sequence generators can
be created in a database using theCREATE SEQUENCE seq_nameSQL command. Each has
pseudocolumns called NEXTVAL and CURRVAL. Typical usage:

INSERT INTO table (k, v) VALUES (seq_name.nextval, ?)

To get the value just inserted you can use

SELECT seq_name.currval FROM DUAL

Oracle does not support automatic key generation such as ‘‘auto increment’’ or ‘‘system
generated’’ keys. However they can be emulated using triggers and sequence generators.
For example:

CREATE TRIGGER trigger_name
BEFORE INSERT ON table_name FOR EACH ROW
DECLARE newid integer;

BEGIN
IF (:NEW.key_field_name IS NULL)
THEN

SELECT sequence_name.NextVal INTO newid FROM DUAL;
:NEW.key_field_name := newid;

END IF;
END;

Automatic Row Numbering and Row Count Limiting
The ROWNUM pseudocolumn can be used to sequentially number selected rows (start-
ing at 1). Sadly, howev er, Oracle’s ROWNUM has some frustrating limitations. Refer to
the Oracle SQL documentation.

Parameter Binding
Parameter binding is directly suported by Oracle. Both the? and:1 style of placeholders
are supported.

The bind_param() method TYPE attribute can be used to indicate the type a parameter
should be bound as. These SQL types are bound as VARCHAR2: SQL_NUMERIC,
SQL_DECIMAL, SQL_INTEGER, SQL_SMALLINT, SQL_FLOAT , SQL_REAL,
SQL_DOUBLE, and SQL_VARCHAR. Oracle will automatically convert from
VARCHAR2 to the required type.

The SQL_CHAR type is bound as a CHAR thus enabling fixed-width blank padded com-
parison semantics.

DBD::Oracle 7

19 May 1999

8 DBD::Oracle

The SQL_BINARY and SQL_VARBINARY types are bound as RAW. SQL_LONG-
VARBINARY is bound as LONG RAW and SQL_LONGVARCHAR as LONG.

Unsupported values of the TYPE attribute generate a warning.

Stored Procedures
Oracle stored procedures are implemented in the Oracle PL/SQL language*.

* A procedural extension to SQL that supports variables, control flow,
packages, exceptions, etc.

TheDBD::Oracle module can be used to execute a block of PL/SQL code by starting it
with a BEGIN and ending it with anEND;. PL/SQL blocks are used to call stored proce-
dures. Here’s a simple example that calls a stored procedure called ‘‘foo’’ and passes it
two parameters:

$sth = $dbh->prepare("BEGIN foo(:1, :2) END;");
$sth->execute("Baz", 24);

Here’s a more complex example:

$sth = $dbh->prepare("BEGIN bar(:bang, :bong) END;");
$sth->bind_param(":bang", "Baz");
my $pong = 42;
$sth->bind_param_inout(":bong", \$bong, 100);
$sth->execute;
print "Pong is now: $pong\n";

Table Metadata
DBD::Oracle supports thetable_info() method.

The ALL_TAB_COLUMNS view contains detailed information about all columns of all
the tables in the database, one row per table. (Note that fields containing statistics derived
from the actual data in the corresponding table are updated only when theANALYSEcom-
mand is executed for that table.)

The ALL_INDEXES view contains detailed information about all indexes in the
database, one row per index. (Note that fields containing statistics derived from the actual
data in the corresponding table are updated only when theANALYSEcommand is executed
for that table.) The ALL_IND_COLUMNS view contains information about the columns
that make up each index.

Primary keys are implemented as unique indexes. See ALL_INDEXES above.

Driver-specific Attributes and Methods

19 May 1999

DBD::Oracle has no significant driver-specific database or statement handle attributes.

The following private methods are supported:

plsql_errstr

$plsql_errstr = $dbh->func(’plsql_errstr’);

Returns error text from the USER_ERRORS table.

dbms_output_enable

$dbh->func(’dbms_output_enable’);

Enables the DBMS_OUTPUT package. The DBMS_OUTPUT package is typically
used to receive trace and informational messages from stored procedures.

dbms_output_get

$msg = $dbh->func(’dbms_output_get’);
@msgs = $dbh->func(’dbms_output_get’);

Gets a single line or all available lines using DBMS_OUTPUT.GET_LINE.

dbms_output_put

$msg = $dbh->func(’dbms_output_put’, @msgs);

Puts messages using DBMS_OUTPUT.PUT_LINE.

Positioned updates and deletes
Oracle does not support positioned updates or deletes.

Differences from the DBI Specification
DBD::Oracle has no known significant differences in behavior from the current DBI spec-
ification.

URLs to More Database/Driver Specific Information
http://www.oracle.com
http://technet.oracle.com

Concurrent use of Multiple Handles
DBD::Oracle supports an unlimited number of concurrent database connections to one or
more databases.

DBD::Oracle 9

19 May 1999

10 DBD::Oracle

It also supports the preparation and execution of a new statement handle while still fetch-
ing data from another statment handle, provided it is associated with the same database
handle.

19 May 1999

