
1
DBD::mysql and DBD::mSQL

Version
Versions 1.20xx and 1.21_xx.

Version 1.20xx (even numbers) are the stable line, which is maintained for bug and
portability fixes only. Version 1.21_xx (odd numbers) is used for development of the
driver: All new features or interface modifications will be done in this line until it finally
becomes 1.22xx.

Author and Contact Details
The driver author is Jochen Wiedmann. He can be contacted via the mailing listMsql-
Mysql-modules@tcx.se.

The drivers include modules that emulate the old Msql and Mysql Perl extensions using
the DBI and DBD modules.

Supported Database Versions and Options
MySQL and mSQL are freely available lightweight database servers. MySQL has a rich
feature set while mSQL is very minimalist.

The DBD::mysql driver 1.20xx supports all MySQL versions since around 3.20. The
DBD::mysql driver 1.21_xx supports MySQL 3.22 or later. Support for more recent ver-
sions may or may not be added at a later time.

TheDBD::mSQLdrivers 1.20xx and 1.21_xx support all mSQL versions upto and including
mSQL 2.0.x.

Connect Syntax

1

19 May 1999

2 DBD::mysql and DBD::mSQL

TheDBI->connect() Data Source Name, orDSN, can be one of the following:

DBI:mysql:database=$db
DBI:mysql:database=$db;<attrs>

DBI:mSQL:database=$db
DBI:mSQL:database=$db;<attrs>

The optional attributes are specified as a semicolon separated list of key/value pairs.
Some significant attributes include:

host=$host

The host name you want to connect to, by defaultlocalhost.

msql_configfile=$file

Load driver specific settings from the given file, by defaultInstDir/msql.conf. This
path is fixed at compile time.

mysql_compression=1

For slow connections, you may wish to compress the traffic between your client and
the engine. If the MySQL engine supports it, this can be enabled by using this
attribute. Default is off.

There are no driver specific attributes applicable to theconnect() method.

Numeric Data Handling
MySQL has five sizes of integer data type, each of which can be signed (the default) or
unsigned (by adding the word UNSIGNED after the type name).

Name Bits Signed Range Unsigned Range
--------- ---- ----------------------- -----------------------
TINYINT 8 -128..127 0..255
SMALLINT 16 -32768..32767 0..65535
MEDIUMINT 24 -8388608..8388607 0..16777215
INTEGER 32 -2147483648..2147483647 0..4294967295
BIGINT 64 -(2*63)..(2**63-1) 0..(2**64)

The type INT can be used as an alias for INTEGER. Other aliases include
FLOAT4=FLOAT , FLOAT8=DOUBLE, INT1=TINYINT, INT2=SMALLINT,
INT3=MEDIUMINT, INT4=INT, INT8=BIGINT, MIDDLEINT=MEDIUMINT.

Note that all arithmetic is done using signed BIGINT or DOUBLE values, so you
shouldn’t use unsigned big integers larger than the largest signed big integer (except with
bit functions). Note that- , + , and* will use BIGINT arithmetic when both arguments are
INTEGER values. This means that if you multiply two big integers (or multiply the
results from functions that return integers), you may get unexpected results if the result is
bigger than 9223372036854775807.

19 May 1999

MySQL has three main types ofnon-integerdata type: FLOAT , DOUBLE, and DECI-
MAL.

In what follows, the letterM is used for themaximum display sizeor PRECISIONin
ODBC and DBI terminology. The letterD is used for the number of digits that may follow
the decimal point. (SCALEin ODBC or DBI terminology).

Maximum display size (PRECISION) and number of fraction digits (SCALE) are typi-
cally not required. For example, if you use just ‘‘DOUBLE’’ then default values will be
silently inserted.

DOUBLE(M,D)

A normal-size (double-precision) floating-point number. Allowable values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0 and
2.2250738585072014E-308 to 1.7976931348623157E+308.

REAL and DOUBLE PRECISION can be used as aliases for DOUBLE.

FLOAT(M,D)

A small (single-precision) floating-point number. Allowable values are
-3.402823466E+38 to -1.175494351E-38, 0 and -1.175494351E-38 to
3.402823466E+38.

FLOAT(M)

A floating-point number. Precision (M) can be 4 or 8.FLOAT(4) is a single-precision
number andFLOAT(8) is a double-precision number. These types are like the FLOAT
and DOUBLE types described above.FLOAT(4) andFLOAT(8) have the same ranges
as the corresponding FLOAT and DOUBLE types, but their display size and number
of decimals is undefined. This syntax is provided for ODBC compatibility.

DECIMAL(M,D)

The DECIMAL type is an unpacked floating-point number type. NUMERIC is an
alias for DECIMAL. It behaves like a CHAR column; ‘‘unpacked’’ means the num-
ber is stored as a string, using one character for each digit of the value, the decimal
point, and, for negative numbers, the- sign). If D is 0, values will have no decimal
point or fractional part. The maximum range of DECIMAL values is the same as for
DOUBLE, but the actual range for a given DECIMAL column may be constrained
by the choice ofM andD.

NUMERIC can be used as an alias for DECIMAL.

The numeric data types supported by mSQL are much more restricted:

INTEGER - corresponds to MySQL’s INTEGER type.
UINT - corresponds to MySQL’s INTEGER UNSIGNED type.

DBD::mysql and DBD::mSQL 3

19 May 1999

4 DBD::mysql and DBD::mSQL

REAL - corresponds to MySQL’s REAL type.

The driver returns all data types, including numbers, as strings. It thus puts no restriction
on size of PRECISION or SCALE.

String Data Handling
The following string types are supported by MySQL, quoted frommysql.infowhereM
denotes the maximum display size or PRECISION:

CHAR(M)

A fixed-length string that is always right-padded with spaces to the specified length.
The range ofM is 1 to 255 characters.

VARCHAR(M)

A variable-length string. NOTE: Trailing spaces are removed by the database when
the value is stored (this differs from the ANSI SQL specification). The range ofM is
1 to 255 characters.

ENUM(’value1’,’value2’, . . .)

An enumeration. A string object that can have only one value, chosen from the speci-
fied list of values (or NULL). An ENUM can have a maxiumum of 65535 distinct
values.

SET(’value1’,’value2’, . . .)

A set. A string object that can have zero or more values, each of which must be cho-
sen from the specified list of values. A SET can have a maximum of 64 members.

CHAR and VARCHAR types have a limit of 255 bytes. Binary characters, including the
NUL byte, are supported by all string types. (Use the$dbh->quote() method for literal
strings).

These aliases are also supported:

BINARY(num) CHAR(num) BINARY
CHAR VARYING VARCHAR
LONG VARBINARY BLOB
LONG VARCHAR TEXT
VARBINARY(num) VARCHAR(num) BINARY

With DBD::mysql , the ChopBlanksattribute is always on: The MySQL engine itself
removes spaces from the strings right end. As far as I know, this ‘‘feature’’ cannot be
turned off. Another ‘‘feature’’ is that CHAR and VARCHAR columns are always case-
insensitive in comparisons and sort operations, unless you use theBINARYattribute, as
in:

19 May 1999

CREATE TABLE foo (A VARCHAR(10) BINARY)

With versions of MySQL after 3.23, you can perform a case-insensitve comparison of
strings with the BINARY operator modifier:

SELECT * FROM table WHERE BINARY column = "A"

National language characters are handled in comparisons following the coding system
that was specified at compile-time, by default ISO-8859-1. Non-ISO coding systems, and
in particular UTF-16, are not supported.

Strings can be concatenated using theCONCAT(s1, s2, . . .) SQL function.

The mSQL engine (and hence theDBD::mSQL driver) only supports theCHAR(M) string
type, which corresponds to the MySQL’sVARCHAR(M) type, and aTEXT(M) type which is
a cross between a CHAR and a BLOB. Also, mSQL has no way to concatenate strings.

Date Data Handling
The following date and time types are supported by MySQL, quoted frommysql.info:

DATE

A date. The supported range is0000-01-01 to 9999-12-31 . MySQL displaysDATE
values inYYYY-MM-DDformat, but allows you to assign values toDATEcolumns using
these formats:

YYMMDD
YYYYMMDD
YY.MM.DD
YYYY.MM.DD

Where. may be any non-numerical separator and a two digit year is assumed to be
20YYif YYis less than 70.

DATETIME

A date and time combination. The supported range is0000-01-01 00:00:00 to
9999-12-31 23:59:59 . MySQL displays DATETIME values in YYYY-MM-DD
HH:MM:SSformat, but allows you to assign values toDATETIMEcolumns using the
formats shown for DATE above but with ‘‘ HH:MM:SS’’ appended.

TIMESTAMP(M)

A timestamp. The range is1970-01-01 00:00:00to sometime in the year 2032 (or
2106, depending on the OS specific typetime_t). MySQL displaysTIMESTAMPval-
ues inYYYYMMDDHHMMSS, YYMMDDHHMMSS, YYYYMMDD, or YYMMDDformat, depending on
whether M is 14 (or missing), 12, 8 or 6, but allows you to assign values to
TIMESTAMPcolumns using either strings or numbers. This output format behavior
disagrees with the manual, so check your version because the behavior may change.
A TIMESTAMPcolumn is useful for recording the time of anINSERTor UPDATE
operation because it is automatically set to the time of the last operation if you don’t

DBD::mysql and DBD::mSQL 5

19 May 1999

6 DBD::mysql and DBD::mSQL

give it an value yourself. You can also set it to the current time by giving it aNULL
value.

TIME

A time. The range is -838:59:59 to 838:59:59. MySQL displaysTIME values in
HH:MM:SS format, but allows you to assign values toTIME columns using any of
these formats:HH:MM:SS, HHMMSS, HHMM, or ’HH’ .

YEAR

A year. The allowable values are 1901 to 2155, and 0000. MySQL displaysYEAR
values inYYYYformat. On input, 2 digits years in the range 00-69 are assumed to be
2000-2069. (YEARis a new type for MySQL 3.22.)

If you are using two-digit-years as inYY-MM-DD(dates) orYY (years), then they are con-
verted into 2000-2069 and 1970-1999, repectively. Thus, MySQL has no Y2K problem,
but a Y2070 problem!

In MySQL 3.23 this will be changed to 2000-2068 and 1969-1999, following the X/Open
Unix standard*.

* See:

http://www.unix-systems.org/version2/whatsnew/year2000.html>

TheNOW() function, and it’s aliasSYSDATE, allow you to refer to the current date and time
in SQL.

The DATE_FORMAT(date, format) function can be used to format date and time values
usingprintf -like format strings.

MySQL has a rich set of functions operating on dates and times, includingDAY-

OFWEEK(date) (1 = Sunday,. . . , 7 = Saturday),WEEKDAY(date) (0 = Monday, . . . , 6 =
Sunday),DAYOFMONTH(date), DAYOFYEAR(date) , MONTH(date) , DAYNAME(date) , MONTH-

NAME(date) , WEEK(date) , YEAR(date) , HOUR(time) , MINUTE(time) , SECOND(time) ,
DATE_ADD(date, interval) (interval being something like ‘‘2 HOURS’’), and
DATE_SUB(date, interval) .

The following SQL expression can be used to convert an integer ‘‘seconds since
1-jan-1970 GMT’’ value to the corresponding database date time:

FROM_UNIXTIME(seconds_since_epoch)

and the reverse:

UNIX_TIMESTAMP(timestamp)

19 May 1999

MySQL does no automatic time zone adjustments.

The mSQL database supports these date/time types:

DATE - corresponds to MySQL’s DATE type
TIME - corresponds to MySQL’s TIME type

The only date format supported by mSQL isDD-MMM-YYYY, whereMMMis the three charac-
ter English abbreviation for the month name. The only time format supported by mSQL is
HH:MM:SS.

LONG/BLOB Data Handling
These are MySQL’s BLOB types, quoted frommysql.info:

TINYBLOB / TINYTEXT maximum length of 255 (2ˆ8 - 1)
BLOB / TEXT maximum length of 65535 (2ˆ16 - 1)
MEDIUMBLOB / MEDIUMTEXT maximum length of 16777215 (2ˆ24 - 1)
LONGBLOB / LONGTEXT maximum length of 4294967295 (2ˆ32 - 1)

Binary characters in all BLOB types are allowed. None of the types are passed as strings
of hex digits. TheLongReadLenandLongTruncOktypes are not supported.

The maximum length ofbind_param() parameter values is only limited by the maximum
length of an SQL statement. By default that’s 1MB but can be extended to just under
24MB by changing themysqldvariablemax_allowed_packet .

No TYPE or other attributes need to be given tobind_param() when binding these types.

The only blob type supported by mSQL is TEXT. This is a cross between a traditional
VARCHAR type and a BLOB. Anaveragewidth is specified, and data longer thanaver-
ageis automatically stored in an overflow area in the table.

Other Data Handling issues
The driver versions 1.21_xx do support thetype_info() methods. Version 1.20xx
doesn’t.

MySQL supports automatic conversions between data types wherever it’s reasonable.
mSQL, on the other hand, supports none.

Transactions, Isolation and Locking

DBD::mysql and DBD::mSQL 7

19 May 1999

8 DBD::mysql and DBD::mSQL

Both engines do not support transactions.

Since both mSQL and MySQL currently execute statements from multiple clients one at a
time (atomic), and don’t support transactions, there’s no need for a default locking behav-
ior to protect transaction isolation.

With MySQL locks can be explicitly obtained on tables. For example:

LOCK TABLES $table1 READ, $table2 WRITE

Locks are released with any subsequent LOCK TABLES statement, by dropping a con-
nection or with an explicit

UNLOCK TABLES

There are also user defined locks that can be manipulated with theGET_LOCK() and
RELEASE_LOCK()SQL functions. You can’t automatically lock rows or tables during select
statements; you have to do it explicitly.

And, as you might guess, mSQL doesn’t support any kind of locking at the moment.

No-Table Expression Select Syntax
With MySQL you can select constant expressions without naming a table. For example:

SELECT NOW()

You can’t do so with mSQL.

Table Join Syntax
Joins are supported with the usual syntax:

SELECT * FROM a,b WHERE a.field = b.field

or, alternatively:

SELECT * FROM a JOIN b USING field

Outer joins are supported by MySQL, not mSQL, with

SELECT * FROM a LEFT OUTER JOIN b ON condition

Outer joins in MySQL are always left outer joins.

Table and Column Names

19 May 1999

MySQL table and column names may have at most 64 characters. mSQL table and col-
umn names are limited to 35 characters.

MySQL can use all alphanumeric characters defined in the current character set as table
and column names. MySQL also allows you to use the_ and$ characters in names. A
table name can’t start with a number. It is unknown whether non-alphanumeric table and
column names can be used with mSQL.

Neither mSQL nor MySQL support putting quotes around table or column names.

Table names are limited by the fact that tables are stored in files and the table names are
really file names. In particular, the case sensitivity of table names depends on the underly-
ing file system.

Column names are case insensitive with MySQL and sensitive with mSQL, but both
engines store them without case conversions.

Names can include national character set characters (with the 8th bit set) in MySQL but
not mSQL.

Case Sensitivity of LIKE Operator
With MySQL, case sensitivity ofall character comparison operators, including LIKE,
requires on the presence of the BINARY attribute on at least one of the fields—either on
the field type in the CREATE TABLE statement or on the field name in the comparison
operator. Howev er, you can always force case insensitivity using theTOLOWERfunction.

mSQL has three LIKE operators: LIKE is case sensitive, CLIKE is case insensitive, and
RLIKE uses UNIX style regular expressions.

Row ID
MySQL doesn’t hav e row ID’s. mSQL has a pseudo column_rowid .

The mSQL_rowid column value is numeric and, since mSQL doesn’t automatically con-
vert strings to numbers, you must take care not to quote the value when using it in later
select statements.

Note that there’s a risk that the row identified by a_rowid value you just fetched may
have been deleted and possibly replaced by a different row by the time you use the row
ID value moments later.

Automatic Key or Sequence Generation

DBD::mysql and DBD::mSQL 9

19 May 1999

10 DBD::mysql and DBD::mSQL

All MySQL integers can have an AUTO_INCREMENT attribute. That is, given a table:

CREATE TABLE a (
id INTEGER AUTO_INCREMENT NOT NULL PRIMARY KEY,
...)

and a statement:

INSERT INTO a (id, ...) VALUES (NULL, ...)

a unique ID will be generated automatically (similarly if the ID field had not been men-
tioned in the insert statement at all). The generated ID can later be retrieved with

$sth->{mysql_insertid} (1.21_xx)
$sth->{insertid} (1.20xx)

or, if you’ve used$dbh->do and not prepare/execute, then use:

$dbh->{mysql_insertid} (1.21_xx)
$dbh->do("SELECT LAST_INSERT_ID()"); (1.20_xx)

MySQL does not support sequence generators directly, but they can be emulated with a
little care usingUPDATE seq SET id=last_insert_id(id+1) . Refer to the MySQL man-
ual for details.

The mSQL database supports sequence generators, but just one per table. After executing:

CREATE SEQUENCE on A

you can later do:

SELECT _seq FROM A

to fetch the value. You can’t refer directly to the sequence from an insert statement;
instead, you have to fetch the sequence value and then execute an insert with that value.
There seems to be no protection against someone inserting rows without using the
sequence.

Automatic Row Numbering and Row Count Limiting
Neither engine supports automatic row numbering of select statement results.

MySQL does support row count limitations with:

SELECT * FROM A LIMIT 10

to retrieve the first 10 rows only, and:

SELECT * FROM A LIMIT 20, 10

19 May 1999

to retrieve rows 20-29, with the count starting at 0.

Parameter Binding
Neither engine supports placeholders, but theDBD::mysql andDBD::mSQL drivers provide
full emulation. Question marks are used as placeholders, as in:

$dbh->do("INSERT INTO A VALUES (?, ?)", undef, $id, $name);

The:1 placeholder style is not supported.

In the above example, the driver attempts to guess the inserted columns datatype by look-
ing at Perl’s datatype. This is fine with MySQL, because MySQL can deal with expres-
sions like:

INSERT INTO A (id) VALUES (’2’)

if id is a numeric column. But this doesn’t apply to mSQL so you sometimes need to
force a datatype, either by using:

$dbh->do("INSERT INTO A VALUES (?, ?)", undef, int($id), $name);

or by using the TYPE attribute of thebind_param() method:

use DBI qw(:sql_types);
$sth = $dbh->prepare("INSERT INTO A VALUES (?, ?)");
$sth->bind_param(1, $id, SQL_INTEGER);
$sth->bind_param(2, $name, SQL_VARCHAR);
$sth->execute;

Unsupported values of the TYPE attribute do not currently generate a warning.

Stored Procedures
Neither mSQL nor MySQL have a concept of stored procedures.

Table Metadata
The 1.21_xx version of the drivers to support thetable_info()method. The 1.20xx ver-
sions don’t.

To obtain information on a generic table, you can use the query

LISTFIELDS $table

This will return a statement handle without result rows. TheTYPE, NAME, . . . attributes
are describing the table.

With MySQL you can use:

DBD::mysql and DBD::mSQL 11

19 May 1999

12 DBD::mysql and DBD::mSQL

SHOW INDEX FROM $table

to retrieve information on a table’s indexes, in particular a primary key. The information
will be returned in rows. TheDBD::mSQLdriver does support a similar thingvia

LISTINDEX I<$table> I<$index>

with $indexbeing the name of a given index.

Driver-specific Attributes and Methods
The following driver specific database handle attributes are supported:

mysql_info

mysql_thread_id

mysql_insertid

These are corresponding to the C callsmysql_info() , mysql_thread_id() , and
mysql_insertid() , repectively.

The following driver specific statement handle attributes are supported:

mysql_use_result

mysql_store_result

With DBD::mysql there are two different ways the driver fetches results from the
server. Withmysql_store_resultenabled, it fetches all rows at once, creating a result
table in memory and returns it to the caller (a 100% row cache).

With mysql_use_result, it returns rows to the application as they are fetched. This is
less memory consuming on the client side, but should not be used in situations where
multiple people can query the database, because it can block other applications.
(Don’t confuse that with locking!)

mysql_insertid

A previously generatedauto_incrementcolumn value, if any.

mysql_is_blob

mysql_is_key

msql_is_num

mysql_is_num

19 May 1999

msql_is_pri_key

mysql_is_pri_key

These are returning a array ref with the given flags set for any column of the result
set. Note you may use these with the LISTFIELDS query to obtain information about
the columns of a table.

mysql_max_length

Unlike thePRECISIONattribute, this returns the true actual maximum length of the
particular data in the current result set. This can be helpful, for example, when dis-
playing ASCII tables.

This attribute doesn’t work withmysql_use_resultenabled, since it needs to look at
all the data.

msql_table

mysql_table

Similar toNAME, but the table names and not the column names are returned.

msql_type

mysql_type

These are similar to theTYPEattribute, but they return the respective engines native
type, likeDBD::mysql ::FIELD_TYPE_ENUM()or DBD::mSQL::IDX_TYPE().

msql_type_name

mysql_type_name

Similar to msql_typeandmysql_type, but column names are returned, that you can
use in a CREATE TABLE statement.

A single private method calledadmin() is supported. It provides a range of administration
functions:

$rc = $drh->func(’createdb’, $db, $host, $user, $password, ’admin’);
$rc = $drh->func(’dropdb’, $db, $host, $user, $password, ’admin’);
$rc = $drh->func(’shutdown’, $host, $user, $password, ’admin’);
$rc = $drh->func(’reload’, $host, $user, $password, ’admin’);

$rc = $dbh->func(’createdb’, $database, ’admin’);
$rc = $dbh->func(’dropdb’, $database, ’admin’);
$rc = $dbh->func(’shutdown’, ’admin’);
$rc = $dbh->func(’reload’, ’admin’);

These correspond to the respective commands ofmysqladminandmsqladmin.

Positioned updates and deletes

DBD::mysql and DBD::mSQL 13

19 May 1999

14 DBD::mysql and DBD::mSQL

Neither positioned updates nor deletes are supported by MySQL or mSQL.

Differences from the DBI Specification
The DBD::mysql driver cannot turn off theChopBlanksattribute, because the database
server always chops trailing blanks.

BothDBD::mysql andDBD::mSQL do not fully parse the statement until it’s executed. Thus
attributes like$sth-{NUM_OF_FIELDS}> are not available until after$sth- execute> has
been called. This is valid behaviour but is important to note when porting applications
written originaly for other drivers.

Also note that many statement attributes cease to be available after fetching all the result
rows or calling thefinish() method.

URLs to More Database/Driver Specific Information
For MySQL:

http://www.mysql.com/

For mSQL:

http://www.hughes.com.au/

Concurrent use of Multiple Handles
The number of database and statement handles is limited by memory only. There are no
restrictions on their concurrent use.

19 May 1999

