Complex Event Processing
with Triceps CEP v2.0

Developer's Guide

Sergey A. Babkin

Complex Event Processing with Triceps CEP v2.0 : Developer's Guide

Sergey A. Babkin
Copyright © 2014 Sergey A. Babkin

All rights reserved.
Thismanual is apart of the Triceps project. It is covered by the same Triceps version of the LGPL v3 license as Triceps itself.
The author can be contacted by e-mail at <babkin@users.sf.net> or <sah123@hotmail.com>.

Many of the designations used by the manufacturers and sellersto distinguish their products are claimed as trademarks. Where those designations appear
in this manual, and the author was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this manual, the author assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Table of Contents

[(= =0 PP S O PTTPPPPPT T Xi
1. ADOUL the MENUELooee ettt e et e e e Xi
2. SOIME COMOEPLS ..eveeitieeti ettt e et ettt et ettt e e ettt e e et e e et e e e et et et et et e e e e e et e et n et e e et et neeen e ennn s Xi
L1 THE FIEIA OF CEP ...ttt ettt e e et e et et e et et e e e e na s 1
L1 WHEE IS ThE CEP? ..o ettt e e e e e e 1
1.2, TRE USES OF CEP ...ttt e et e e e et e ettt e ettt e e e et e e e e ba s 2
1.3, SUrVEYing the CEP 8NGSTADEcccetiieeiii ettt ettt e et e et e e e et eeeenen s 2
1.4. Were not in 1950S @NY MOFE, OF @€ WE?uieueeit et et e et e e et e e et e e e tt e e e e e et e e et e ean e ean e aennaeeannas 3
A 0= I = oL ST UPPPTTRPUPPIN 7
P o= = o (o I | ST P PP UPPPTPRUPPIN 7
A o 1= o TR Y o g o | 8
N =W] o 0 To B I T = o TP OO UPPPTTRUPPIN 11
3.1, DOWNIOAOING TTICEDS ... eeeetti ettt ettt ettt ettt ettt ettt e et et e ettt e et e b e et e b e e e et 11
3.2. The referenCe ENVITONIMENTcoiii ittt e et e et et e e et e e e e et e e e eenaes 11
3.3 . ThE DESIC DU ... ettt et e e et e e e e 12
3.4. BUilding the dOCUMENTELIONiiiiii ettt e et e e ettt e e ettt e e e e et e e e enn e eeen 12
3.5. Running the examples and SIMPIE PrOOraMSiieurieieii ettt e e eeeanns 13
3.6. LOCAIE UEPENTEINCYeeetieieit ettt ettt ettt e ettt et e et e et e e e eaaa s 14
3.7. Installation Of the Perl THOraryi i et 14
3.8. Instalation Of the CH+ lIrary ... e 15
3.9. Disambiguation Of the C THDIaIYc..uuiiiiii e 16
3.10. Build CONfiQUIation SEELINGSvueeeertneeeiit ettt ettt e et e et e e et et e et et e et ebt e e eerb e eeeenaaeeees 17
A, APl FUNAMENTAISeeete ettt ettt e et et e et et e e et et e e et et e e e e et e e e e ena s 19
4.1, LangUagES AN TAYENS ... e 19
4.2. Errors, deaths and CONTESSIONScuiiriitiitii e et e et et e e et e e et e eaeeaeeneeens 19
4.3. Memory management fUNCaMENTAIScviiueiieii e e 20
4.4. Code references and SNIPPELScoeuuu ittt et et e 21
A5, TTICEPS CONSIAIES ... eevtueeeitt ettt e ettt e ettt e ettt e ettt e ettt e e ettt e ettt e et e bb e et e et e e e e e nb e e e enaa s 22
4.6. Printing the ODJECT CONTENTSuuiiiiii et e e ettt e e e et e e e ent e eeenes 23
A.7. The HUNQAITAN NOBLIONeeeiteieitt ettt ettt e et et e e e et e e e e et e e e enne e eeennans 24
4.8. The Perl libraries and eXaMPIES ...ttt e e e e s 25
LT {0 T S PRSPPI 27
I IS 110 L= Y o= TP TPPPPTPUPPPIN 27
5.2, ROW TYPES .. ie ittt ettt ettt e et et e et 27
5.3. ROW TYPES EQUIVBIEINCEttt ettt et e et e et e et e e e e an e e e eenans 29
5. ROWS ..ttt e et e et et et e e e 30
6. LabDE!S and ROW OPEIGLIONStuieiietieeeeet ettt et ettt e e et e et et et e et e et et r e et e e r e e e et e e e e ene e eeenens 33
B.1. LADEIS DBSICS ...oeveiiiii e 33
6.2, LaADEl CONSITUCTION ...ttt ettt ettt e et e et et e ettt e e e et e e e era s 34
6.3. Other 1ahel MELNOOScoeiiiiee et e e e e s 35
B.4. ROW OPEIBIIONSeetteeeeti ettt ettt ettt e e ettt ettt et ettt et ettt e e et ettt e e e ettt e e eebt e e e eebb e eeeeneaeeees 36
B.5. OPICOTESeeeti ettt ettt ettt et e et e e e e e e eaaas 38
S o 11= o (U] 110 To [PPSR 41
7.1. Introduction t0 the SChEAUIINGeuu et e s 41
7.2. Comparative scheduling in the various CEP SYStEMSoiiiiiiiiiiiiii e 41
7.3. EXECULION UNIT DBSICS ...oeveiiiiiii et et e e e e e e e e eaans 41
A 1 = £ T PP UPPUPPN 43
7.5. Error handling during the EXECULTONcooiuiiiiiiii e 44
7.6, NO BUNAIING ...t ettt ettt ettt e e e na e e eneans 45
FAT A el oo o e o I Lo o o TP PPPPTTT 46
7.8. THE MEIN TOOP ...ttt ettt e ettt e et e e et e et e e e eae e e eenens 51
7.9. Main [00P WIth @ SOCKELeiiiiiie et e et e e 54
7.10. TraCing the @XECULIONc.uuueeeiie ettt ettt e e et e e et e e et et e e e e et e e et e b e e et et e e e eban s 63

7.11. The gritty details of Triceps SChedUIINGccouniiii e e 69

7.12. The gritty details of Triceps [00p SChedUlINGcovuiiiii i 72
8 R (= o = Yo oo g 11 (o) PP 74
8. MEMOIY IMANAGEIMENE ... euii ittt et e e e e e et e et e e e et e e e e e e e e e e e e e e e e e en 77
T = = 0o 0y - 77
8.2. Clearing Of the 1aEIS .. .ceu e 78
8.3. The ClEAriNgG IADEIS ... ceii e e e e e e e e e e e et 79
LS I =SSP 81
N 1= T Lo T = o = PP 81
0.2, TADIES @NA TA0EIS ...ee e 82
9.3. Basic iteration through the tableooui i e 85
LS 1= T i o = T o 85
9.5. A closer 100k at the ROWHANAIESuuiiiiiii e 86
9.6. A WINAOW 1S @ FIFO .ouiiiiiiiiei i e e et e ettt e e e et e e e et e e e e eran s 88
0.7. SECONUAIY INUEXES .. cevueiiieeii e e e e e e e e e et e et e e et e et et e e et e e et e e e ta e e aa e e at e e st e astnaersneeennaees 92
SRS o 1 (o [T oo PR 95
S O 0 = o [T To = PP 98
N O I 0 TC T o (ot = PP 101
9.11. Table and indeX tyPe INtFOSPECLIONcuuuiiii e e e e e e e e et e e e e e e eanas 111
S N2 I o= ooV 1 - Y/ PPN 114
LS G T I o LT =0 oL o U 115
O 1= 0L (N 117
O IR @ a0 = = A= 1010 LU =4 117
O 1= 0410 = (A7 T = £/ PPN 118
10.3. SIMPIE WIapPEr TEMPIBEES ... civt e ee e e e e e e e e e e et e et e e et e e et e e et e e et e e et e eetn e eanaees 119
10.4. Templates of interconNECted COMPONENESuuiiieieiiii e i e e e e e e e e e e e et e e e e et e e aneeeens 119
O 1= 0010 = (= o 1 o =P 124
10.6. Code generation in the tEMPIAEScouiiiiii e e e 129
10.7. Result projection in the tEMPIAESoiiiiii e e e e e e e e e e aaas 136
10.8. Error reporting in the teMPIateSco.uiiiii e 141
N0 o | = o (o o 143
11.1. The UbIQUITOUS VWA ...t e e e e e e e e et e et e e et e e et e e e e eaaaees 143
A V= g TU T o o | (=0 = o 145
11.3. Introducing the Proper agQregalionccuueeiiieei e e e e e e e e e e e e e et e e et e e et e e et e eaaeeeanns 149
11.4. Tricks with aggregation on a Sliding WINAOWcccuiiiiiiiiiiieiie e e e e e e e e e aaes 153
11.5. OptiMIZEA DELETES .. .cciiiiiiiiiii ettt e e s e e et n e e et e e e e et e e e e et e e e e et eeas 157
SR Ao o [A== o o = = 1 Lo 159
11.7. Computation fUNCLION @rQUMENESuuiiiiieii i eeie e e e e e e e et e e e e e e e et e e et e e s e e et e e et e eenaas 163
11.8. USING MUILIPIE INOEXES ...ovniiiciii et e e e e e e e e et e e e e e e et e e et e e eanaas 165
IS TS T 0T o =70 o | =0 = (o 169
11.10. The guts Of SIMPIEAGOrEIAONuuiiie e e et e e e e e e e e et e e et e e et e s et e e st e e et s eeanaeaanaees 173
22 o 1 PSP 181
N T o1 R = S 181
2 o 1= o o1 181
12.3. The lookup join, done MaNUEITYiiiiiiiiiii e e e e e e e e e e e e aaeees 182
12.4. The LOOKUPJOIN tEBMPIALE ... c.veiii e e e e e e e e et e e et e e e eanaas 184
12.5. Manual iteration With LOOKUPJOINuuiiiiiiii e e e e e e e e e e et e et e e ea e e eanees 189
12.6. The key fields Of LOOKUPJIOINuuiieeiiiieii e e e e e et e e e e e e e e e e e e et s e e e et eeaa e e aaneeeanss 190
12.7. A Peek iNSIAe LOOKUDIOIN . ..uuuiiii et ie i et e e e e e e e e e e e et e e et e et e e et e e eaneeeanaas 192
12.8. JOINTWO JOINS TWO tADIESuuiii e e e e e e e e e et e e et eeaaas 195
12.9. The key field duplication in JOINTWOciuueiiiiee e e e e e e e e e e e et e e aaeeaannas 203
12.10. The override optioNS iN JOINTWOiiutiiiii e e e e e e e e e e e e et e e e e et e e et e eeannas 204
12.11. JoinTWO iNPUE @VENE FIITEITNGieee it e e e e e e e e eeen 204
12.12. Self-join done With JOINTWOceuniiii i e e e e e e e e e e e e e e e et e e et e e et e e aneeaneees 208
12.13. Self-join done MANUAITYuiiiiiiii e e e e e e e e 212

Complex Event Processing with Triceps CEP v2.0

12.14. Self-join done With @ LOOKUPJOINuuiiii it e e e e e e e e e e e e e et e e et e e e e eanaeeeen 214

12.15. A glimpse inside JoinTwo and the hidden options of LOOKUPJOINceeviiiiiiiiiiiieiii e 216
G T S o 0o o P 221
13.1. Time-limited PrOPagatioNccuuneiiiiei e e et e e e e e e e e e e e e e e e et e e et e e et eeaa e e et e eeaneaeanaes 221
T = oo (Yo U oo = (- 227
13.3. The general 1SSUES Of tiME PrOCESSING .. ovvuuiiineii et et e e e e e e e et e e e e e e e et e e et e e san e eaaeeaaneeeenns 230
14. The other templateS and SOIULIONSuuiiiiiiii e e e e e e e e e e et e et e e et e e et e e etaeeeanaees 233
14.1. The dreaded GIamMONGiiiiiiiiie e et e et e e et e e e aaanr e e e et neeeesnnns 233
14.2. CollaPSEA UPUBIES ... cevueiiiieeii ettt e e e e e e e e e e e e et e e et e e et e e aa e e et e e et eeaneeaes 237
14.3. Large deletes in SMall ChUNKSiiiiiii e e e e e e e e e e aaaees 244
IS = o T g To 0 Tox o 249
15.1. Introduction to Streaming FUNCLIONSuiiiii i e e e e e e e e eanas 249
15.2. Streaming functions by example, another version of Collapsecccouvviviiiiiiii i 251
15.3. Collapse with grouping by key with streaming fUNCLIONSccoiiiiiiiiii e 253
15.4. Table-based tranglation with streaming fUNCLIONScc.uiiiiiiiiii e, 256
15.5. Streaming fUNCLIONS @N0 O0PSccvuiiiiiieiii e e e e e e e e e e e e e et e et e eaaeenen 259
15.6. Streaming functions and PIPEIINEScouuiiiiiiii e e 262
15.7. Streaming fUNCLions and tablESciiiniiii i 266
15.8. Streaming functions and temMpPlate rESUITScc.uiiiiiii e 268
15.9. Streaming fUNCLIONS aNd FECUIMSIONuiitiiii e e e e e e e e e e e e e et e e et e e st e e et e eaaaeeanaes 269
15.10. Streaming fUNCLIONS aNd MOE FECUISIONvvuiieiieeii et e et e e e e e e et e et e e et e e st e e et eeaaeeennnas 273
15.11. Streaming functions and unit BOUNAAITESuiiiiiiiiii e 283
15.12. The ways to call a streaming fUNCLIONcoouiiiiiiii e e e aens 288
15.13. The gritty details of streaming functions schedulingcoooiiiiiii i 288
W 1 T ="o [Vo PP 289
16.1. Triceps MUltithreading CONCEPLSivuniiii e e e e e e e e et e e et e eea e eeas 289
T I ST L= o B T (=0 = 290
16.3. Multithreaded PIPEIINEuiiii e e e e e e e e e e e e aaas 292
16.4. Object passing between threadscoouiiiiii e 299
16.5. Threads and fil@ DESCIIPLOISuu e e e e e e e e e et e et e e et e e eanaas 303
16.6. Dynamic threads and fragments in @ SOCKEL SEIVEYoiiiiiiiiii i e 306
16.7. ThreadedServer implementation, and the details of thread harvestingcccoooviii i, 316
16.8. ThreadedClient, @ TrCEPS EXPECLcvuuiiiiiiiii et e e e e e e e aaaas 320
16.9. Thread main loop and timeouts in the guts of ThreadedClientcoooeiiiiiiiin e, 323
16.10. The threaded dreaded diamond and data reorderingcoovvuieiiiiiiiii e 325
17. TQL, Triceps Trivial QUENY LANQUAGEuuiiunieiiii i ee ettt e e e e e e e e e e et e e e e et e e st e e et e e et eeaneeanns 335
0 O 1 1 oo 0 ' T (o T 1 P 335
I O IS o - PP 335
17.3. TQL COMMANGSuiitieiiieiit ettt e e e et e e et e et e e e et e e e e e et e e et eeaa e e et e e et e e et aeeaa e ean s eaetneesnneeennns 336
17.4. TQL in asiNgle-threaded SEIVErouiiiii e e e aaaas 338
17.5. TQL in amulti-threaded SEIVEYoiiiiiii e e e e e e e e e 340
oI 1= g = = Y O T o 347
18, PEITOIMMANCE ... ettt ettt ettt e e et aa e et e et et et e et et e e e b e e et e e e ean s 357
19. Triceps Perl AP REFEIENCEcou i e e e e e e e e et e et e e et e e et e e aaaaas 361
19.1. TOp-1eVEl FUNCLIONS FEFEIENCEui i e e e e e e et e e e et e e aan s 361
19.2. Code hEIPErS FEfEIEINCEivviiei e e et e e e et e e et e e et e e et e eaenaaes 363
19.3. Unit and FrameMark FEfEIENCEcvieiei it e et 364
RS = o L= Y o L= €= (= 1 T 369
RS N 1 10 Lo Y oL (== (1 TS 371
19.6. AQQregalorTYPE FEfEIEINCE . .uuiteit e et e e e e e e e e e e e e e et e et e ea e an e e e e aneeenes 374
RIS Tl o [=TaNe o [0 = (0 g 1= (= (= o= Y 374
RS R I o L (= = oot PP 376
19.9. ROWHANAIE FEFEIENCE .. .ovviiieeiiiii et e e e e e e e e et e e e e st e e e e aan s 379
19.10. AQOregatorCONEXE FEFEIENCE i i e e e e e e e e e e e e e e et e e e eenes 380
S I I T O oL = = 1= S 381

e T T Lo Y = =< 1o 384

e e T o o) (U o N o T g T (== (= 1 S PP 385
19.14. JOINTWO FEFEIEINCE ...ievtiieeiiii ettt e ettt e e et e e et e e e ettt e e ettt e e e eatneeeett e e e aestnaeeeeaenneeaees 388
RS LT @0 =0 1S SN = = (= o= 390
RS 2T o= o I £ = = oot PP 391
19.17. FNRELUIMN FEFEIBINCE iet ettt ettt et e et e et e e et r et eb e e et e e et aeean e eanas 393
19.18. FNBINAING FEFEIENCE ... ceviiiii e e e e e e e e e et e e st e e et e e aaeeaanas 395
19.19. AULOFNBING FEFEIENCE ..uu it e ettt e ettt e e e ettt e e ettt e e e e ebtn s e e e estnaeeaentnaaaees 399
S I O A o] I == = o= 400
19.20.1. ApP iNStANCE MANAJEMENTuuiieeeii i eii e et e e e e et e e et e e et e e et e e st e e et e e e e eat e e et eeaneenen 400

RS 2 T2 A o) I == o [o) o 400

RS T2 O e TN o) o 10 0= o= o T o U 401
19.20.4. APP harvester CONIOliiiuiiiiii e e e e e e e e e e 401
19.20.5. APP StaE MEANAGEIMENT ... vuii ittt e e e e e e e e e e e e e e e e e e anaenns 402

RS T2 O NS TN o) o o | T a T e o Y 403

RS T A A o) = A 1101 1 405
19.20.8. File descriptor transfer through an APP «..c.ve e e e 406
19.20.9. APP DU ..o aaaa 407
RS T N g T= o I L (= 0o P PTPR 408
19.22. TriEalOWNES TEIEIENCE .. ciiiit ettt e et e e e ettt e e e e et s e e e et e e e eett e e e eebaaeaeees 410
19.22.1. TrieadOWNEr CONSLIUCLION ...e.vuueieitieeeeii e e ettt e e ettt e e e et e e e et e e e e et e e e e et e e e e et e e e eenenaas 410
19.22.2. TrieadOwner general MEhOOScovuiiiiiiii e 411
19.22.3. TrHEAHOWNES raiNS ...vuuieiiiiiee e e et e e et e e et e e e e et e e e et e e e e et e e e eren s 417
19.22.4. TrieadOwner file INtEITTUPLIONoovniii e e e e e e e aens 418
19.22.5. TraCKEAFTIE ...vu ettt e et r e et n e e e et n e e e aaa e e eeaenns 419
19.23. INEXUS FEFEIEIICE ... eetieeeiee et ettt ettt ettt et e et e et e e et e e et r e et e e ebaa e e et e e eaeaeanns 420
TO.24. FACEL TEFEIBICE ... eiee ettt ettt et ettt e et e et e et e et e e et e e et e e et e e b e e e e ean s 420
19.25. AULODIEIN FEFEIEINCE .. oiivtiieeeiii ettt e et e e e et e e e et e e e e et e e e e st e e eestnnes 423
20. TrCEPS CHt APl REFEIENCE .. ittt e e e e e e e e e et e e et e e et e e et eeaaeaaanaes 425
P20 I O N o B V1 oo (1 1 o o [T 425
20.2. The CONSE-NESS 1N CH ittt e e e e e et e e et e e e et e e e e et e e e e tt e e e e et e e e eren s 425
20.3. Memory management in the C++ APl and the Autoref reference..........ooooeviviiiiinii e 426
20.4. The Many WayS t0 00 @ COPY ..vvuuiiiunieiiiieiiie e et et et e e et e e e e e et e e st e e et eeat e e et e eetneeean e et e eaaneeennnes 428
b0 SIS T 0T U 11T 431
20.6. Perl wrapping for the CH+ ODJECESuiiiiii i e e e e e e e e eaaas 432
20.7. Error reporting and Errors FEfEIENCEuiiiii e e e e e e e e e e e e e eaes 435
O T (v o 1o T = (= (= o= 439
20.9. INItialiZBHON TEMPIAEES .. cive i e e e e e e e e e e e et e e et e e et e e e et e e st e e et e eetneeeaneees 441
I O I o1 = = = o= 442
20.11. SIMPIE tYPES FEFEIEINCE ...uiiie et e e e e e et e e et e et e e et e e et e e et e e e eeaanns 444
O (o YV Y/ o L= = [(=0 To = R 445
20.13. ROW and ROWTEF TEFEIEINCEvuiieieiii e e e e e et e e et 448
WO I o LY Y o I (= L= (= o= P 454
20.15. NAMESEL FEFEIEINCE ieeneeii ettt et ettt e et et et e et e e et r e et e e an e e et e eenn e 457
20.16. INOEXTYPE FEFEIEINCE ..vuiitiiiii ettt e et et e e e e e e et e e e e e et e e et e e st e e e e e an e eetneeeaneeeaas 458
P A 1o O Q1= 1 = g o= PSP 460
20.18. FIfOINAEXTYPE FEFEIENCE . .ovuiciii e et e e e e e e e e e e e e e et e e et e e et e e et e e eeannns 460
20.19. HashediNdeXTYPE FEfEIENCEvuiiii et e e e e e e e et e e e e e et e e et e aaanaees 461
20.20. SOrtediNEXTYPE FEFEIENCE . .ovui it eei et e e e e e e e e e e et e e et e e et e e et e e e et e e et e e et e eananes 461
WA B €T o (o (= Q= (= (= 0+ YR 471
O A I o L (= 1 = g o= PSP 472
PO A T B T = o (1] 0 1 o PP 475
WO S o YA = 1 (0] £ TSP 475
20.23. RowHandle and RIref FEfErENCEoouuniiiiii e e e 476
20.24. AQQregator Classes FEFEIENCEuu it e e e e e e e e et e e e e e e e eaas 477

Vi

Complex Event Processing with Triceps CEP v2.0

20.24.1. AQQregatorTYPE FEFEIEINCEuiee e e e e e e e e e een 477

20.24.2. AQQregatorGadget FEfEIENCEu.iii et e e e e e e et e e e e ean s 479
20.24.3. AQQregalor FEfEIENCEt et e e e e e e e aa e 480
20.24.4. BasiCAQQregator TYPE FEFEIENCE ... cvvu it e e e e aaas 483
20.24.5. AQOEJAOr EXAMPIE ..uuiiieiit e e e e e e e e 483

B IS T U 14T (= L= (= o= 488
20.26. UNIt TraCer FEfEIENCE . ..iivi i iiii e e ettt e e et e e e e e e e e et e e et e e et e e et e e et e e et eeanaees 491
A R o= B = = oo 493
O T (0 YY) I == =0 495
O ae B I = YA == = o 496
20.30. FrameMark FEfEIEINCEcuuuiiii e et e e e e e e e e e e e e e et e e et e et e e et e e et e e et e e aaeeanaees 497
20.31. ROWSELTYPE FEFEIEICE .. evn it e e e e e e e e e et et e et e et e et e e e enaeens 498
PO A o o (0 I = = = 10 499
20.33. FNBINAING FEFEIENCE .. ovni i e e e e e e e e e e e e e et e e e e e e eaaaas 502
20.34. ScopeFnBind and AUtOFNBING FEfEIENCEuiii e e e s 504
B0 L AN o] I (= 1= (= 110 506
O ST W 1= o = (= (= 0ot 509
R T AN AT=" 0 (O = (= = (= o TN 510
20.38. NEXUS FEFEIEICE . .vuitieiteie ettt e e e e e e e e e et e e et et et et e e e ea s e en e e s et e et e etneetaannns 514
O e B ot R = = = o 514
A0 [RN U (ol DI - T o I (= (= (= 110 P 517
PO NS Lo U g2 (= = (= 0 T 518
O N g 1= o N o T oI (= (= 0 (o= P 519
O R L= (o U o LA = (= (= 0 PP 520
20.44. BaSICPINread rEfErENCEcovvn i e 520
b I (= 1= S I [== 523
P2 N (= 1= 1S 5 PP 523
20.2. REEASE 2.0.0 ..oevuiiiiiiii et e ettt e et eaaann 523
P2 G (= == L 0 1 P 524
P (= 1= S O P 524
205, REEASE 0.99 ...t e e e e e a et e ettt e e aataaae 525
LT] o] oo =" /R 527
T = 529

Vii

viii

List of Figures

6.1. Stateful elements wWith Chained 18DEIS.coouuiiiii e 34
7.1. Labels forming @ topologiCal 100P.ccouuuiiiiiiiie ettt 46
7.2. Proper CallS IN @ 100D, .. .eeuiieiiiii ettt ettt et et r e aee 73
O.1. DIrawWingS [EOBNM.cceetiieieii ettt ettt e e et et e et et a e et eaaas 102
L O 0T 1o (=g 1Y o PP PPPPPTT 103
0.3, SHAIGNE NMESHING. ... eeeett ettt ettt ettt e et e et et et et et e e e e e e enaa s 104
9.4. begi n(), begi nl dx($i t A) and begi nl dx($i t B) work the samefor thistable.ccevvnnnen. 105
9.5.findl dx($itA $rh) goesthrough A and then switches to the begi nl dx() 10giC.ccoevvvriiinnnnnn. 106
9.6. first O Groupl dX((Bi £ B, Br N . e nennnenee 107
9.7.next G oupl dX(Bi B, Brh) . oo 107
9.8. TWO TOP-1EVEl TNUEX TYPES. . etieeeiit ettt ettt ettt ettt e et et et e et e e e e ane e e ennans 108
9.9. A “primary” and “Secondary” INAEX TYPE.uu ittt ettt e e et e 109
9.10. TWO indeX tyPES NESLE UNUEN ONE.uiuiiiiti ettt e e et e e et e et et e e et et e e e e eaa s 110
14.1. The diamOond tOPOIOGY.ueeeetiee ittt ettt e e et e e et et e e et et e e e e et e e e e et e e e e era s 233
15.1. The difference between the function and Macro CallS.coivuiiiiiiii e 249
15.2. The query patterns and Streaming fFUNCLIONS.uuuiiiiii e eeaans 250
16.1. Triceps multithreaded apPIICALION.uu.iiiiii et e e et e ettt e e et e e e eeba e eeens 289
16.2. Chat Server iNtErNal SIMUCKUIE. ...ttt ettt et et e et e e e et e e eaa s 307
17.1. Multithreaded TQL appliCation SIFUCLUIE.iieiii ettt e e et e e e 341
19.1. The use of IMMEAIBIE IMPOIT.coett ettt e et e e et e e et et e ettt e e e eett e e e eere e eeenes 415

Preface

1. About the manual

Before starting on the subject of the Triceps CEP itself, | want to tell some things about the organization of this manual.

It had grown quite large, and if it were printed on paper, | would have divided it into at least three volumes. But in the
electronic form it's more convenient as a single document, this way the cross-references between any parts of it work
seamlesgly.

The manual keeps living and growing together with Tricepsitself. Asthings changein Triceps, they change in the manual,
but sometimes it's difficult to track down and update all the mentions of the changed subject. I've been spending a huge
effort on tracking all such instances down but sometimes things slip through. Keep this in mind and don't be too scared
when some paragraph says something contradictory.

A known issue with thismanual isthat it tendsto describe the subjectsin the bottom-up fashion, starting from the low-level
detailsand then building up to the high-level concepts. Thisis partially because the manual has been growing together with
Triceps, which is being built from the ground up. And partialy it's because | like the details. When | read about a product,
| want to understand, how exactly it works. When | write, | want to convey thisinformation. | rewrote some of the chapters
to put the high-level descriptions up front. But it's a huge work that will take some time to complete for the whole manual.
In the meantime, 1'd rather not delay the releases for it, they've been already slowed alot by the documentation work. So it
will get better with time, and in the meantime, if you feel that some details are too much for you, feel freeto skip over them.

There are great many other improvements that can be done to the manual, and they will eventually be done. But my take
on itisthat it's better to have an imperfect manual now than a perfect one in some distant future. It had already been too
long in the works, writing the manual for the version 2.0 had taken awhole year.

2. Some concepts

When talking about the CEP programs, | often use the term “model”. What isamodel? It's basically a CEP program. And
more about the models and about what is the CEP itself is described in Chapter 1 .

Many of the examplesare built around the world of stock trading. In the modern times almost everyoneis probably familiar
with the basics of this area. But if case if you're not, let me tell the most fundamental thing needed for understanding the
examples: what is a symbol.

When the stock shares of some company are traded on an exchange, this company gets assigned a short identifier. This
identifier is known as the stock symbol for this company. This word is also often used to mean not just the identifier but
also the shares denoted by it. If a company has multiple classes of shares, each class would have its own symbol. And if a
company is traded on multiple exchanges, each exchange may have its own identifier for its shares. The options and other
derivative financia products also have their own symbols.

xi

Xii

Chapter 1. The field of CEP
1.1. What is the CEP?

CEP stands for the Complex Event Processing. If you look at Wikipedia, it has separate articles for the Event Stream
Processing and the Complex Event Processing. In redlity it's al the same thing, with the naming driven by the marketing.
| would not be surprised if someone invents yet another name, and everyone will start jumping on that bandwagon too.

In general a CEP system can be thought of as a black box, where the input events come in, propagate in some way through
that black box, and come out as the processed output events. There is also an idea that the processing should happen fast,
though the definitions of “fast” vary widely.

If we open the lid on the box, there are at least three ways to think of its contents:
* agpreadsheet on steroids
+ adataflow machine

» adatabase driven by triggers

Hopefully you've seen a spreadsheet before. The cells in it are tied together by formulas. Y ou change one cell, and the
machine goes and recal culates everything that depends on it. So does a CEP system. If we look closer, we can discern the
CEP engine (which is like the spreadsheet software), the CEP model (like the formulas in the spreadheet) and the state
(like the current values in the spreadsheet). An incoming event is like a change in an input cell, and the outgoing events
are the updates of the valuesin the spreadshest.

Only atypical CEP system is bigger: it can handle some very complicated formulas and many millions of records. There
actually are products that connect the Excel spreadsheets with the behind-the-curtain computations in a CEP system, with
the results coming back to the spreadsheet cells. Pretty much every commercial CEP provider has a product that does that
through the Excel RT interface. The way these models are written are not exactly pretty, but the results are, combining the
nice presentation of spreadsheets and the speed and power of CEP.

A dataflow machine, where the processing elements are exchanging messages, isyour typical academical ook at CEP. The
events represented as data rows are the messages, and the CEP model describes the connections between the processing
elements and their internal logic. This approach naturally maps to the multiprocessing, with each processing element be-
coming a separate thread. The hiccup is that the research in the dataflow machines tends to prefer the non-looped topol o-
gies. The loops in the connections complicate the things.

And many real-world relational databases already work very similarly to the CEP systems. They have the constraints
and triggers propagating these constraints. A trigger propagates an update on one table to an update on another table. It's
like aformulain a spreasheet or alogical connection in a dataflow graph. Y et the databases usually miss two things. the
propagation of the output events and the notion of being “fast”.

The lack of propagation of the output eventsis totally baffling to me: the RDBMS engines aready write the output event
stream as the redo log. Why not send them also in some generalized format, XML or something? Then people realize that
yes, they do want to get the output events and start writing some strange add-ons and aftermarket solutions like the log
scrubbers. Thishas been amystery to mefor some 15 years. | mean, how more obvious can it be? But nobody budges. Well,
with the CEP systems gaining popularity and the need to connect them to the databases, | think it will eventually grow on
the database vendors that a decent event feed is a competitive advantage, and | think it will happen somewhere soon.

The feeling of “fast” or lack thereof has to do with the databases being stored on disks. The growth of CEP has coincided
with the growth in RAM sizes, and the datais usually kept completely in memory. People who deploy CEP tend to want
the performance not of hundreds or thousands but hundreds of thousands events per second. The second part of “fast” is
connected with the transactions. In atraditional RDBMS a single event with all its downstream effects is one transaction.

Which is safe but may cause lots of conflicts. The CEP systems usually allow to break up the logic into multiple loose-
ly-dependent layers, thus cutting on the overhead.

1.2. The uses of CEP

Despite what Wikipedia says (and honestly, the Wikipedia articles on CEP and ESP are not exactly connected with reality),
the pattern detection is not your typical usage, by awide, wide margin. The typical usage is for the data aggregation: lots
and lots of individual events come in, and you want to aggregate them to keep a concise and consistent picture for the
decision-making. The actual decision making can be done by humans or again by the CEP systems. It may involve some
pattern recognition but usually even when it does, it doesn't look like patterns, it looks like conditions and joins on the
historical chains of events.

The usage in the cases | know of includes the ad-click aggregation, the decisions to make a market trade, the watching
whether the bank's end-of-day balance falls within the regulations, the choosing the APR for lending.

A related use would be for the general aert consoles. The data aggregation is what they do too. The last time | worked
with it up close (around 2006), the processing in the BMC Patrol and Nagios was just plain inadequate for anything useful,
and | had to hand-code the data collection and console logic. I've been touching this issue recently again at Google, and
apparently nothing has changed much since then. All the real monitoring is done with the systems devel oped in-house.

But the CEP would have been just the ticket. | think, the only reason why it has not been widespread yet is that the
commercial CEP licenses had cost alot. But with the all-you-can-eat pricing of Sybase, and with the Open Source systems,
thisis gradually changing.

Well, and there is al so the pattern matching. It has been lagging behind the aggregation but growing too.

1.3. Surveying the CEP langscape

What do we have in the CEP areanow? The sceneis pretty much dominated by Sybase (combining the former competitors
Aleri and Coral8) and StreamBase.

There seem to be two major approachesto the execution model. One was used by Aleri, another by Coral8 and StreamBase.
I'm not hugely familiar with StreamBase, but that's how it seems to me. Since I'm much more familiar with Coral8, I'll be
calling the second model the Coral8 model. If you find StreamBase substantially different, let me know.

The Aleri ideais to collect and keep al the data. The relational operators get applied on the data, producing the derived
data ("materialized views") and eventually the results. So, even though the Aleri models were usually expressed in XML
(though an SQL compiler was also available), fundamentally it's avery relational and SQLY approach.

This creates a few nice properties. All the steps of execution can be pipelined and executed in parallel. For persistence,
it's fundamentally enough to keep only the input data (what has been called BaseStreams and then SourceStreams), and al
the derived computations can be easily reprocessed on restart (it's funny but it turns out that often it's faster to read a small
state from the disk and recalculate the rest from scratch in memory than to load alarge state from the disk).

It also hasissues. It doesn't allow loops, and the procedural calculations aren't lways easy to express. And keeping all the
state requiresmore memory. Theissues of loopsand procedural computations have been addressed in Aleri by FlexStreams:
modul es that would perform the procedural computationsinstead of relational operations, written in SPLASH — avaguely
C-ish or Java-ish language. However this tends to break the relational properties: once you add a FlexStream, usually you
do it for the reasons that prevent the derived cal culations from being re-done, creating issues with saving and restoring the
state. Mind you, you can write a FlexStream that doesn't break any of them, but then it would probably be doing something
that can be expressed without it in the first place.

Coral8 has grown from the opposite direction: the idea has been to process the incoming data while keeping a minimal
state in the variables and short-term windows (limited sliding recordings of the incoming data). The language (CCL) is
very SQL-like. It relies on the state of variables and windows being pretty much global (module-wide), and allows the
statements to be connected in loops. Which means that the execution order matters alot. Which means that there are some

2 The field of CEP

quite extensive rules, determining this order. The logic ends up being very much procedural, but written in the peculiar
way of SQL statements and connecting streams.

The good thing is that all this allows to control the execution order very closely and write things that are very difficult
to express in the pure un-ordered relational operators. Which allows to aggregate the data early and creatively, keeping
less datain memory.

The bad news is that it limits the execution to a single thread. If you want a separate thread, you must explicitly make a
separate module, and program the communi cations between the modules, which is not exactly easy to get right. There are
lots of people who do it the easy way and then wonder, why do they get the occasional data corruption. Also, the ordering
rules for execution inside a module are quite tricky. Even for some fairly simple logic, it requires writing a lot of code,
some of which isjust bulky (try enumerating 90 fields in each statement), and some of which istricky to get right.

The summary is that everything is not what it seems: the Aleri models aren't usually written in SQL but are very declara-
tive in their meaning, while the Coral 8/StreamBase models are written in an SQL-like language but in reality are totally
procedural.

Sybaseisaso striking for amiddle ground, combining the featuresinherited from Aleri and Coral8 inits CEP R5 and later:
use the CCL language but relax the execution order rulesto the Aleri level, except for the explicit single-threaded sections
where the order is important. Include the SPLASH fragments for where the outright procedural logic is easy to use. Even
though it sounds hodgy-podgy, it actually came together pretty nicely. Forgive me for saying so myself since I've done a
fair amount of design and the execution logic implementation for it before I've left Sybase.

Still, not everything is perfect in this merged world. The SQLY syntax still requires you to drag around all your 90 fields
into nearly every statement. The single-threaded order of executionisstill non-obvious. It's possible to write the procedural
code directly in SPLASH but the boundary where the data passes between the SQLY and C-ish code till has awhole lot
of itsown kinks (less than in Aleri but till alot). And worst of all, thereis still no modular programming. Y eah, there are
“modules’ but they are not really reusable. They aretied too tightly to the schema of the data. What is needed, is morelike
C++ templates. Only preferrably something more flexible and less difficult to debug than the C++ templates.

Let me elaborate a little on the point of “dragging around all your fields’. Here is a typical example: you have a stream
of data and you want to pass through only the rows that find a match in some reference table. Which is reasonable to do
with something like:

insert into filtered_data

sel ect
incom ng_data. *

from
incom ng_data as d left join reference_table as r
on d.key_field = r.key_field;

Only you can't writei ncom ng_dat a. * in their syntax, you have to list every single field of it explicitly. If the data
has 90 fields, that becomes quite adrag.

StreamBase does have modules with parametrizable arguments (* capture fields”), somewhat like the C++ templates. The
limitation isthat you can say “and carry any additional fields through unchanged” but can't really specify subsets of fields
for a particular usage (“and use these fields as a key”). Or at least that's my understanding. | haven't used it in practice
and don't understand StreamBase too well.

1.4. We're not in 1950s any more, or are we?

Part of the complexity with CCL programming is that the CCL programs tend to fedl very broken-up, with the flow of
the logic jumping all over the place.

Consider asimple example: some incoming financial information may identify the securities by either RIC (Reutersiden-
tifier) or SEDOL or ISIN, and before processing it further we want to convert them al to ISIN (since the fundamentally
same security may beidentified in multiple ways when it'straded in multiple countries, ISIN isthe common denominator).

We're not in 1950s any more, or are we? 3

This can be expressed in CCL approximately like this (no guarantees about the correctness of this code, since | don't have
acompiler to try it out):

/1 the incom ng data

create schena s_inconi ng (

id_type string, // identifier type: RIC, SEDCL or |ISIN
id_value string, // the value of the identifier

/1 add another 90 fields of payload..

)

/1 the normalized data

create schema s_normalized (

isin string, // the identity is nornmalized to | SIN
/1 add another 90 fields of payload..

)

/1l schema for the identifier translation tables
create schema s_translation (

fromstring, // external id value (R C or SEDQL)
isin string, // the translation to ISIN

)

/1 the windows defining the translations fromR C and SEDOL to | SIN
create wi ndow w_trans_ric schema s_translation

keep | ast per from
create wi ndow w_trans_sedol schema s_translation

keep | ast per from

create input streami _incom ng schema s_incomni ng
create streamincoming_ric schema s_incom ng

create streamincom ng_sedol schena s_incom ng
create streamincomng_isin schema s_inconing

create output streamo_nornalized schena s_nornalized

i nsert
when id_type = '"RIC then incoming_ric
when id_type = 'SEDOL' then incom ng_sedo
when id_type = '"ISIN then incom ng_isin

sel ect *

fromi_incom ng

insert into o_normalized

sel ect
W.isin,
i. ... /] the other 90 fields
from
incoming_ric as i join w_tranc_ric as w
on i.id_value = w.from

insert into o_normalized

sel ect
W.isin,
i. ... I/ the other 90 fields
from
incom ng_sedol as i join w_tranc_sedol as w
on i.id_value = w.from

insert into o_normalized
sel ect
i.id_val ue,
i. ... I/ the other 90 fields

4 The field of CEP

from
i ncom ng_i sin;

Not exactly easy, isit, even with the copying of payload data skipped? Y ou may notice that what it does could aso be
expressed as procedural pseudo-code;

/1 the incom ng data

struct s_incomng (

string id_type, // identifier type: RIC, SEDOL or ISIN
string id_value, // the value of the identifier

/1 add another 90 fields of payload...

)

/1 schema for the identifier translation tables
struct s_translation (

string from // external id value (R C or SEDQO.)
string isin, // the translation to I SIN

)

/1 the wi ndows defining the translations fromR C and SEDOL to | SIN
table s_translation wtrans_ ric

key from

table s_translation w_trans_sedol
key from

s_incom ng i _i ncom ng;

string isin;

if (i_inconmng.id type == "RIC) {
isin = | ookup(w_trans_ric,
w trans_ric.from==i_inconing.id_val ue
).isin;
} elsif (i_incoming.id _type == "'SEDQL') {
isin = | ookup(w_trans_sedol,
w_trans_sedol . from == i _incom ng.id_val ue
).isin;
} elsif (i_incoming.id type =="ISIN) {
isin = i_incomng.id_val ue;

}

if (isin != NULL) {
out put o_ nornalized(isin,
i _incomng. (* except (id_type, id_value))
)

}

Basically, writing in CCL feels like programming in Fortran in the 50s: lots of labels, lots of GOTOs. Each stream is
essentially alabel, when looking from the procedural standpoint. It's actually worse than Fortran, since all the labels have
to be pre-defined (with types!). And there isn't even the normal sequentia flow, each statement must be followed by a
GOTO, like on those machines with magnetic-drum main memory.

Thisisvery much like the examplein my book [Babkin10], in section 6.4. Queues as the sol e synchronization mechanism.
Y ou can alook at the draft text online at http://web.newsguy.com/sab123/tpopp/O6odata.txt. This similarity is not acciden-
tal: the CCL streams are queues, and they are the only communication mechanismin CCL.

The SQL statement structure also adds to the confusion: each statement has the destination followed by the source of the
data, so each statement reads like it flows backwards.

We're not in 1950s any more, or are we? 5

http://web.newsguy.com/sab123/tpopp/06odata.txt

Chapter 2. Enter Triceps
2.1. What led to it

It had happened that I've worked for a while on and with the Complex Event Processing (CEP) systems. |'ve worked for
afew years on the internals of the Aleri CEP engine, then after Aleri acquired Coral8, some on the Coral8 engine, then
after Sybase gobbled up them both, I've designed and did the early implementation of a fair bit of the Sybase CEP R5.
After that I've moved on to Deutsche Bank and got the experience from the other side: using the CEP systems, primarily
the former Coral8, now known as Sybase CEP R4.

Thismade mefeel that writing the CEP modelsis unnecessarily difficult. Even the essentially simple things take too much
effort. I've had thisfeeling before aswell, but one thing isto haveit in abstract, and another isto grind against it every day.

Which in turn led me to thinking about making my own Open Source CEP system, where | could try out theideas| get, and
make the streaming models easier to write. | aim to do better than the 1950's style, to bring the advances of the structured
programming into the CEP world.

Thusthe Triceps project was born. For awhileit was called Biceps, until I've learned of the existence of arecearch project
called BiCEP. It's spelled differently, and isin asubstantially differnt areaof CEP work, but it's easier to avoid confusion,
so | went one better and renamed mine Triceps.

Since then I've moved on from DB, and I'm currently not using any CEP at work (though you never know what would
happen), but Triceps has already gained momentum by itself.

The Triceps development has been largely shaped by two considerations:

* It hasto be different from the Sybase products on which | worked. Thisis helpful from both legal standpoint and from
marketing standpoint: Sybase and StreamBase already have similar products that compete head to head. Thereisno use
getting into the same fray without some major resources.

* It hasto be small. I can't spend the same amount of effort on Triceps as alarge company, or even as a small one. Not
only this saves time but also allows the modifications to be easy and fast. The point of Tricepsisto experiment with the
CEP language to make it easy to use: try out the ideas, make sure that they work well, or replace them with other ideas.
The companies with a large established product can't really afford the radical changes: they have invested much effort
into the product, and are stuck with supporting it and providing compatibility into the future.

Both of these considerations point into the same direction: an embeddable CEP system. Adapting an integrated system for
an embedded usage is hot easy, so it'sagood open niche. Y eah, this niche is not empty either. There aready is Esper. But
from a cursory ook, it seems to have the same issues as Coral 8/StreamBase. It's also Java-centric, and Tricepsis aimed
for embeddability into different languages.

And an embeddable system saves on alot of components.

For starters, no IDE. Anyway, | find the IDEs pretty useless for development in general, and especially for the CEP devel-
opment. Though it comes handy once in awhile for the analysis of the code and debugging.

No new language, no need to devel op compilers, virtual machines, function libraries, external callout APIs. Well, the major
goa of Triceps actually is the development of a new and better language. But it's one of these paradoxes: Aleri does the
relational logic looking like procedural, Coral 8 and StreamBase do the procedural logic looking likerelational, and Triceps
isadesign of alanguage without alanguage. Eventually there probably will be alanguage, to be mixed with the parent one.
But for now alot can be done by simply using the Triceps library in an existing scripting language. The existing scripting
languages are aready powerful, fast, and also support the dynamic compilation.

No separate server executable, no need to control it, and no custom network protocols: the users can put the code directly
into their executables and devise any protocolsthey please. Well, it'snot areal good answer for the protocols, sinceit means

that everyone who wants to communicate the streaming data for Triceps over the network hasto implement these protocols
from scratch. So eventually Triceps will provide a default implementation. But it doesn't have to be done right away.

No data persistence for now either. It's a nice feature, and | have some ideas about it too, but it requires a large amount
of work, and doesn't really affect the API.

The language used to implement Triceps is C++, and the scripting language is Perl. Nothing really prevents embedding
Triceps into other languages but it's not going to happen anywhere soon. The reason being that extra code adds weight
and makes the changes more difficult.

The multithreading support has been a magjor consideration from the start. All the C++ code has been written with the
multithreading in mind. However for the first release the multithreading did not propagate into the Perl API yet.

Even though Tricepsis a system aimed for quick experimentation, that does not imply that it's of atoy quality. The code
is written in production quality to start with, with a full array of unit tests. In fact, the only way you can do the quick
experimentation is by setting up the proper testing from the scratch. The idea of “move fast and break things® is complete
rubbish.

2.2. Hello, world!

Let'sfinally get to business: write asimple “Hello, world!” program with Triceps. Since Tricepsis an embeddable library,
naturally, the smallest “Hello, world!” program would be in the host language without Triceps, but it would not be interest-
ing. So hereisthe ahit contrived but more interesting Perl program that passes some data through the Triceps machinery:

use Triceps;

$hwunit = Triceps::Unit->new"hwnit");
$hw rt = Triceps:: RowType- >new
greeting => "string",
address => "string",

)

ny $print_greeting = $hwunit->makelLabel ($hw rt, "print_greeting", undef, sub {
ny ($l abel, $rowop) = @;
printf("%!\n", join(', ', $rowop->getRow()->toArray()));

b

$hwuni t - >cal | ($pri nt _greeti ng- >makeRowop(&Tri ceps: : OP_I NSERT,
$hw_rt - >makeRowHash(
greeting => "Hello",
address => "worl d",

)
)

What happens there? First, we import the Triceps module. Then we create a Triceps execution unit. An execution unit
keeps the Triceps context and controls the execution for one logical thread.

The argument of the constructor is the name of the unit, that can be used in printing messages about it. It doesn't have to
be the same as the name of the variable that keeps the reference to the unit, but it's a convenient convention to make the
debugging easier. Thisisa common idiom of Triceps: when you create something, you give it aname. If any errors occur
later with this object, the name will be present int the error message, and you'll be able to find easily, which object has
the issue and where it was created.

If something goes wrong, the Triceps methods will confess. To be precise, call Car p: : conf ess, which is like Perl's
di e but also prints the stack trace. Triceps also includesits own high-level call stack into thistrace.

The next statement creates the type for rows. For the simplest example, one row type is enough. It contains two string
fields. A row type does not belong to an execution unit. It may be used in parallel by multiple threads. Once a row type

8 Enter Triceps

is created, it'simmutable, and that's the story for pretty much all the Triceps objects that can be shared between multiple
threads: they are created, they become immutable, and then they can be shared. (Of course, the containers that facilitate
the passing of data between the threads would have to be an exception to thisrule).

Thenwe create alabel. The“label” isthe Tricepsterm for the same kind of stream processing elements asin the other CEP
systems. The Coral8 term for the same concept is“ stream”. The“ SQLY vs procedura” examplein Section 1.4: “We're not
in 1950s any more, or are we?’ (p. 3) shows why these elements are analogs of labels in the procedural programming,
and Triceps generally follows the procedural terminology.

Of course, now, in the days of the structured programming, we don't create labels for GOTOs all over the place. But we
still use labels. The function names are essentially labels, the loops in Perl may have labels. So a Triceps label can often
be seen kind of like afunction definition, but only kind of. It takes a data row as a parameter and does something with it.
But unlike a proper function it has no way to return the processed data back to the caller. It hasto either pass the processed
data to other labels or collect it in some hardcoded data structure, from which the caller can later extract it back. Thus a
Triceps label is still much more like a GOTO label.

Triceps has the streaming functions too, where the caller does provide the way to return the result. These are more than
the ordinary labels.

A basic label takes arow type for the rows it accepts, a name (again, purely for the ease of debugging) and a reference
to a Perl function that will be handling the data. Extra arguments for the function can be specified as well, but there is
no use for them in this example.

Here it's a simple unnamed Perl function. Though of course a reference to a named function can be used instead, and the
same function may be reused for multiple labels. Whenever the label gets a row operation to process, its function gets
called with the reference to the label object, the row operation object, and whatever extra arguments were specified at the
label creation (none in this example). The example just prints a message combined from the data in the row.

Note that the label's handler function doesn't just get arow as an argument. It gets arow operation (“rowop” asit's called
throughout the code). It's an important distinction. A row just stores some data. As the row gets passed around, it gets
referenced and unreferenced, but it just stays the same until the last reference to it disappears, and then it gets destroyed. It
doesn't know what happens with the data, it just storesthem. A row may be shared between multiple threads. On the other
hand, a row operation says “take these data and do such and such a thing with them”. A row operation is a combination
of arow of data, an operation code, and a label that has to carry out the operation. Since the row operation object is also
immutable, areference to arow operation may be kept and reused again and again.

Triceps has the explicit operation codes, very much like Aleri/Sybase R5 (only Aleri doesn't differentiate between arow
and row operation, every row there has an opcode in it). It might be just my background, but let me tell you: the CEP
systems without the explicit opcodes are a pain. The visible opcodes make life alot easier. However unlike Aleri, there
is no UPDATE opcode. The available opcodes are INSERT, DELETE and NOP (no-operation). If you want to update
something, you send two operations:. first DELETE for the old value, then INSERT for the new value. All this will be
described in more detail later.

For this simple example, the opcode doesn't really matter, so the label handler function quietly ignoresiit. It gets the row
from the row operation and extracts the data from it into the Perl representation, then prints them. The Triceps row data
may be represented in Perl in two ways: an array and a hash. In the array format, the array contains the values of the fields
in the order they are defined in the row type. The hash format consists of name-value pairs, which may be stored either
in an actual hash or in an array. The conversion from arow to a hash actually returns an array of values which becomes
ared hash if it gets stored into a hash variable.

Asaside note, this also suggests, how the systems without explicit opcodes came to be: they've been initialy built on the
simple stateless examples. And when the more complex examples have turned up, they've been aready stuck on this path,
and could not afford too deep aretrofit.

The final part of the example is the creation of arow operation for our label, with an INSERT opcode and a row created
from hash-formatted Perl data, and calling it through the execution unit. The row type provides a method to construct the
rows, and the label provides a method to construct the row operations for it. The cal | () method of the execution unit
does exactly what its name implies: it evaluates the label function right now, and returns after all its processing its done.

Hello, world! 9

Thisis avery simple example, so it does only one call. The real Triceps programs get a stream of incoming data, and do
the calls to handle each row of it.

10 Enter Triceps

Chapter 3. Building Triceps

3.1. Downloading Triceps

The official Triceps siteislocated at SourceForge.

http://triceps.sf.net is the high-level page.

http://sf.net/projects/triceps is the SourceForge project page.

The official releases of Triceps can be downloaded from SourceForge and CPAN. The CPAN location is:
http://search.cpan.org/~babkin/triceps/

The Developer's Guide can a'so be found in the Kindle format on Amazon web site, for the Amazon's minimal price of $1.

The release policy of Triceps is aimed towards the ease of development. As the new features are added (or sometimes
removed), they are checked into the SVN repository and documented in the blog form at http://babkin-cep.blogspot.comy/.
Periodically the documentation updates are collected from the blog into this manual, and the official rel eases are produced.

If you want to try out the most bleeding-edge features that have been described on the blog but not officially released yet,
you can get the most recent code directly from the SVN repository. The SVN code can be checked out with

svn co http://svn.code.sf.net/p/triceps/code/trunk

Y ou don't need any login for check-out. Y ou can keep it current with latest changes by periodically runningsvn updat e.
After you've checked out the trunk, you can build it as usual. If you do have alogin and SSH key, you can use then aswell:

svn co svn+ssh://your_username@vn. code. sf.net/p/triceps/code/trunk

3.2. The reference environment

The tested reference build environment is where | do the Triceps development, and currently it is Linux Fedora 11. The
build should work automatically on the other Linux systems aswell, and the testing reportsfrom CPAN show that it usually
works.

The build should work on the other Unix environments too but may require some manua configuration for the available
libraries. The test reports from CPAN show that the BSD varieties (FreeBSD, OpenBSD, MidnightBSD) usually do well.

Currently you must use the GNU Linux toolchain: GNU make, GNU C++ compiler (version 4.4.1 has been tested), glibc,
valgrind. Y ou can build without valgrind by running only the non-valgrind tests.

The older GNU compiler 4.1 and the newer compiler versions have been reported to work aswell. But if you build the trunk
code checked out from SVN (or otherwise in the directory named “t r unk™), thereis a catch with the warning flags. This
kind of build treats almost all warnings as errors, and this causes varying results with the different compiler versions. The
version 4.1 doesn't havethe option - Who- si gn- conver si on andwill fail onit. The newer compiler versions may have
some extrawarnings that will be treated as errors (and since my reference compiler doesn't check for them, the code may
trigger them). The fix for this situation isto edit cpp/ Makef i | e. i nc and change the variable CFLAGS_WARNI NGS,
or just clear it atogether. In the release form thisis not an issue, in the release directory the warnings are not treated as
errors and no warning options are used.

GCC 4.1 isaso known to have complaints about the construct si zeof (fi el d) . I'vemodified the reported occurrences
but more might creep up in the future. If this stops your build, change themto si zeof (TypeO Fi el d) .

The tested Perl versions are 5.10.0 and 5.19.0, and should work on any recent version as well. With the earlier versions
your luck may vary. The Makefile.PL has been configured to require at least 5.8.0. The older versions have a different
threading module and definitely won't work.

11

http://triceps.sf.net
http://sf.net/projects/triceps
http://search.cpan.org/~babkin/triceps/
http://babkin-cep.blogspot.com/

The threads support in the Perl interpreter is needed to run the multithreaded API. If your Perl is built without threads, the
single-threaded part is still usable but all the tests related to multithreading will fail. The last version of Triceps with no
threads support at al is 1.0.1, and it's the last resort if you want to run without threads.

| am interested in hearing the reports about builds in various environments.

The normal build expectation isfor the 64-bit machines. The 32-bit machines should work (and the code even includesthe
special cases for them) but have been untested at the moment. Some of the tests might fail on the 32-bit and/or big-endian
machines due to the different computation of the hash values, and thus producing a different row order in the result.

3.3. The basic build

If everything works, the basic build is simple, go to the Triceps directory and run:

make al |
make test

That would build and test both the C++ and Per| portions of Triceps. The C++ librarieswill be created under cpp/ bui | d.
The Perl libraries will be created under per | / Tri ceps/ bl i b.

Thetestsare normally run with valgrind for the C++ part, without valgrind for the Perl part. Thereason isthat Perl produces
lots of false positives, and the suppressions depend on particular Perl versions and are not exactly reliable.

If your system differs substantially, you may need to adjust the configurable settings manually, since thereisno. / con-
fi gur e script in the Triceps build yet. More information about them is in the Section 3.10: “Build configuration set-
tings’ (p. 17) .

The other interesting nake targets are:

cl ean
Remove dl the built files.

cl obber
Remove the object files, forcing the libraries to be rebuilt next time.

vt est
Run the unit tests with valgrind, checking for leaks and memory corruption.

gt est
Run the unit tests quickly, without valgrind.

rel ease
Export from SVN aclean copy of the code and create arelease package. The package name will be triceps-version.tgz,
wheretheversionistaken from the SV N directory name, from wherethe current directory ischecked out. Thisincludes
the build of the documentation.

3.4. Building the documentation

If you have downloaded the release package of Triceps, the documentation is aready included it in the built form. The
PDF and HTML versions are availablein doc/ pdf anddoc/ ht i . It is aso available online from http://triceps.sf.net.

The documentation is formatted in DocBook, that produces the PDF and HTML outputs. If you check out the source
from SVN and want to build the documentation, you need to download the DocBook tools needed to build it. | hate the
dependency situations, when to build something you need to locate, build and download dozens of other packages firsti,
and then the versions turn out to be updated, and don't want to work together, and all kinds of hell break loose. To make
things easier, I've collected the set of packages that I've used for the build and that are known to work. They've collected

12 Building Triceps

http://triceps.sf.net

in http://downloads.sourceforge.net/project/triceps/docbook-for-1.0/. The DocBook packages come originally from http://
docbook.sf.net, plusafew extrapackagesthat by now | forgot wherel've got from. An excellent book on the DocBook tools
and their configuration is [Stayton07]. And if you're interested, the text formatting in Docbook is described in [Walsh99].

DocBook isgreat intheway it takes cary of great many thingsautomatically but configuringitisplainly abitch. Fortunately,
it's al already taken care of. I've reused the infrastructure I've built for my book [Babkin10] for Triceps. Though some
elements got dropped and some added.

Downloading and extraction of the DocBook tools gets taken care of by running

make - C doc/ dbt ool s

These tools are written in Java, and the packages are already the compiled binaries, so they don't need to be built. Aslong
as you have the Java runtime environment, they just run. However like many Java packages, they are sloppy and often
don't return the correct return codes on errors. So the results of the build have to be checked visually afterwards.

The build also uses Ghostscript for converting the figues from the EPS format. The luck with Ghostscript versions also
varies. The version 8.70 works for me. I've seen some versions crash on this conversion. Fortunately, it was crashing after
the conversion actually succeeded, so aworkaround was to ignore the exit code from Ghostscript.

After the tools have been extracted, the build is done by

make -C doc/src

The temporary files are cleaned with

make -C doc/src cl eanwor k
Theresultswill beindoc/ pdf anddoc/ ht n .

If like meyou plan to usethe DocBook toolsrepeatedly to build the docsfor different versionsof Triceps, you can download
and extract them once in some other directory and then set the exported variable TRI CEPS_TOOLS BASE to point to it.

3.5. Running the examples and simple programs

Overdll, the exampleslivetogether with unit tests. The primary target languagefor Tricepsis Perl, so the examplesfrom the
manual are the Perl exampleslocatedinper | / Tri ceps/ t . Thefileswith names starting with “x” contain the examples
as such, likexW ndow. t . Usually there are multiple related examples in the same file.

The examples as shown in the manual usually read the inputs from stdin and print their results on stdout. The actual
examplesinper |/ Tri ceps/t arenot quite exactly the same because they are plugged into the unit test infrastructure.
Thedifferenceislimited to the input/output functions: rather than reading and writing on the stdin and stdout, they take the
inputs from variables, put the results into variables, and have the results checked for correctness. This way the examples
stay working and do not experience the bit rot when something changes.

Speaking of the examples outputs, the common convention in this manual isto show the lines entered from stdin as bold
and the lines printed on stdout as regular font. This way they can be easily told apart, and the effects can be connected
to their causes. Like this:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
| bAver age OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
id="3" synbol =" AAA" price="20" size="20"
| bAver age OP_I NSERT synbol =" AAA" id="3" price="15"

Running the examples and simple programs 13

http://downloads.sourceforge.net/project/triceps/docbook-for-1.0/
http://docbook.sf.net
http://docbook.sf.net

The other unit testsinthe . t files are interesting too, since they contain absolutely all the possible usages of everything,
and can be used as areference. However they tend to be much more messy and hard to read, exactly because they contain
in them lots of tiny snippets that do everything.

The easiest way to start trying out your own small programs s to place them into the same directory per | / Tri ceps/ t
and run them from there. Just name them with the suffix . pl , so that they would not be picked up by the Perl unit test
infrastructre (or if you do want to run them as a part of unit tests, use the suffix . t).

To make your programs find the Triceps modules, start them with
use ExtUtils::testlib;

use Triceps;
use Carp;

Themodule Ext Uti | s: :testli b takes care of setting the include paths to find Triceps. Y ou can run them from the
parent directory, like:

perl t/xW ndow.t

The parent directory isthe only choice, since Ext Uti | s: : test | i b can not set up the include paths properly from the
other directories.

3.6. Locale dependency

Some of the Perl tests depend on the locale. They expect the English text in some of the error strings received from the OS
and Perl, so if you try to run them in a non-English locale, these testsfail.

To work around thisissue, I've added LANG=C in the top-level Makefile, and when the tests run from there, they use this
English locale.

However if you run make test directly inthe perl/ Tri ceps subdirectory, it has no such override (because the
Makefile there is built by Perl). If you run the test from there and use a non-English locale, you'd have to set the locale
for the command expicitly:

LANG=C nake test

Some of these expected messages might also change between different OSes and between different versions of Perl. They
seem pretty stable overall but you'd never known when something might change somewhere, and that would lead to the
spuriousfailuresthat can beignored. I'd beinterested to |earn of them, to support all known forms of messagesin thefuture.

3.7. Installation of the Perl library

If you have the root permissions on the machine and want to install Tricepsin the central location, just run

make -C perl/Triceps install

If you don't, there are multiple options. One is to create your private Perl hierarchy in the home directory. If you decide
to put it into SHOVE/ i nst , the installation there becomes

nkdir -p $HOVE i nst
cp -Rf perl/Triceps/blib/* $HOWE i nst/

Y ou can then set the environment variable
export PERL5SLI B=$HOVE/ i nst/ i b: SHOVE/ i nst/arch

to have your private hierarchy prepended to the Perl's standard library path. You can then insert “use Tri ceps; ” and
the Triceps module will be found. If you want to have the man pages from that directory working too, set

14 Building Triceps

export MANPATH=$HOWE/ i nst : $MANPATH
Not that Triceps has any usable man pages at the moment.

However if you're building a package that uses Triceps and will be shipped to the customer and/or deployed to aproduction
machine, placing the libraries into the home directory is till not the best idea. Not only you don't want to pollute the
random home directories, you also want to make sure that your libraries get picked up, and not the ones that might happen
to beinstalled on the machine from some other sources (because they may be of different versions, or completely different
libraries that accidentaly have the same name).

The best idea then is to copy Triceps and all the other libraries into your distribution package, and have the binaries
(including the scripts) find them by arelative path.

Suppose you build the package prototype in the $PKGDI R, with the binaries and scripts located in the subdirectory bi n,
and the Triceps library located in the subdirectory bl i b. When you build your package, you install the Triceps library
in that prototype by

cp -Rf perl/Triceps/blib $PKGDI R/

Then this package gets archived, sent to the destination machine and unarchived. Whatever the packagetype, t ar , cpi o or
r pm doesn't matter. Therelative pathsunder it stay the same. For example, if it getsinstalled under / opt / ny_package,
the directory hierarchy would look like this:

[opt/ nmy_package

+- bin
| +- ny_program pl
+- blib
+- ... Triceps stuff ...

The script ny_pr ogr am pl can then use the following code at the top to load the Triceps package:
#!/ usr/ bi n/ perl
use Fil e:: Basenane;

This is the magi c sequence that adds the relative include paths.
BEQ N {

my $nypath = di rnane($0);

unshift @NC, "${nypath}/../blib/lib", "${nypath}/../blib/arch";
}

use Triceps;

It finds its own path from $0, by taking its directory name. Then it adds the relative directories for the Perl modules and
XS shared libraries to the include path. And finally loads Triceps using the modified include path. Of course, more paths
for more packages can be added as well. The script can also use that own directory (if saved into a global instead of ny
variable) to run the other programs later, find the configuration files and so on.

3.8. Installation of the C++ library

There are no special install scriptsfor the C++ libraries and includes. To build your C++ code with Triceps, simply specify
thelocation of Tricepssourcesand built librarieswith options- | and - L. For example, if you havebuilt Tricepsin $HOVE/
srcs/triceps-1.0. 0, youcan add the following to your Makefile:

TRI CEPSBASE=$(HOVE) / srcs/triceps-1.0.0

CFLAGS += -1 $(TRI CEPSBASE) / cpp - DTRI CEPS_NSPR4
LDFLAGS += -L$(TRI CEPSBASE)/cpp/build -Itriceps -1nspr4 -pthread

The Triceps include files expect that the Triceps C++ subdirectory is directly in the include path as shown.

Installation of the C++ library 15

The exact set of - Dflagsand extra- | libraries may vary with the Triceps configuration. To get the exact ones used in the
configuration, run the special configuration make targets:

make --quiet -f cpp/ Makefile.inc getconf
make --quiet -f cpp/Makefile.inc getxlib

The additions to CFLAGS are returned by get conf . The additional external libraries for LDFLAGS are returned by
get xl i b. It's important to use the same settings in the build of Triceps itself and of the user programs. The differing
settings may cause the program to crash.

If you build your code with the dynamic library, the best packaging practiceisto copy thel i bt ri ceps. so tothesame
directory where your binary is located and specify its location with the build flags (for GCC, the flags of other compilers

may vary):
LDFLAGS += "-W,-rpath="$$ORIG@ N .""

Or any relative path would do. For example, if your binary package contains the binaries in the subdirectory bi n and the
librariesin the subdirectory | i b, the setting for the path of the libraries relative to the binaries will be:

LDFLAGS += "-W,-rpath="$$ORIAN ../lib""

But locating the binaries and the shared libraries won't work if Triceps and your program get ever ported to Windows.
Windows searches for the DLLs only in the same directory.

Or it might be easier to build your code with the static library: just instead of - | t r i ceps, link explicitly with $(TRI -
CEPSBASE) / cpp/ bui | d/ i btri ceps. a and thelibrariesit requires:

LDFLAGS += $(TRI CEPSBASE)/ cpp/ build/libtriceps.a -|pthread -|nspr4

3.9. Disambiguation of the C++ library

A problem with the shared libraries is that you never know, which exact library will end up linked at run time. The sys-
tem library path takes priority over the one specified in - r pat h. So if somene hasinstalled a Triceps shared library sys-
tem-wide, it would be found and used instead of your one. And it might be of a completely different version. Or some
other package might have messed with LD LI BRARY _PATHintheuser's. prof i | e, and inserted its path with its own
version of Triceps.

Messing with LD LI BRARY_PATH is bad. The good solution is to give your libraries some unique
name, so that it would not get confused. Instead of |ibtriceps.so, name it something like
libtriceps_my_corp_my_project_v_123. so.

Triceps can build the libraries with such names directly. To change the name, edit cpp/ Makef i | e. i nc and change
LI BRARY : = triceps
to

LI BRARY :

triceps_ny_corp_ny_project_v_123

and it will produce the custom-named library. The Perl part of the build detects this name change automatically and still
works (though for the Perl build it doesn't change much, the static C++ Triceps library gets linked into the X S-produced
shared library).

Thereisalso aspecia make target to get back the base name of the Triceps library:
nmake --quiet -f cpp/Makefile.inc getlib

The other potential naming conflict could happen with both shared and dynamic libraries. It appears when you want to link
two different versions of the library into the same binary. Thisis needed rarely, but still needed. If nothing special isdone,

16 Building Triceps

the symbol names in two libraries clash and nothing works. Triceps provides a way around it by having an opportunity
to rename the C++ namespaces, instead of the default namespace “Tri ceps”. It can be done again by editing cpp/
Makef i | e. i nc and modifying the setting TRI CEPS _CONF:

TRI CEPS_CONF += - DTRI CEPS_NS=Tri cepsM/Ver si on

Suppose that you have two Triceps versions that you want both to use in the same binary. Suppose that you are building
themin$(HOVE) / srcs/triceps-1.0.0and $(HOVE)/ srcs/triceps-2.0.0.

Then you edit $(HOVE) / srcs/ tri ceps- 1. 0. 0/ cpp/ Makefi | e. i nc and put in there

TRI CEPS_CONF += - DTRI CEPS_NS=Tri ceps1

Andin$(HOME) / srcs/triceps-2.0.0/ cpp/ Makefile.inc put

TRI CEPS_CONF += - DTRI CEPS_NS=Tri ceps2

If you use the shared libraries, you need to disambiguate their names too, as described above, but for the static libraries
you don't have to.

Almost there, but you need to have your code use the different namespaces for different versions too. The good practice
istoincludein your files

#i ncl ude <common/ Conf . h>

and then use everywhere the Triceps namespace TRI CEPS NSinstead of Tr i ceps. Then aslong asone sourcefile deals
with only oneversion of Triceps, it can be easily manipulated to which version to use by providing that versionin theinclude
path. And you get your program to work with two versions of Triceps by linking the object files produces from these source
filestogether into one binary. Then you just build some of your fileswith- 1 $(HOVE) / srcs/ tri ceps-1. 0. 0/ cpp
and somewith - | $(HOVE) / srcs/ tri ceps- 2. 0. 0/ cpp and avoid any conflicts or code changes.

At the link time, you will need to link with the libraries from both versions.

3.10. Build configuration settings

Since Triceps has only avery limited autoconfiguration yet, it may need to be configured manually for the target operating
system. The same method is used for the build options.

The configuration options are set inthefilecpp/ Makef i | e. i nc. The extradefinesare added in TRI CEPS_CONF, the
extralibrary dependenciesin TRI CEPS_XLI B.

So far the only such configurable library dependency is the NSPRA4 library. It's used for its implementation of the atomic
integers and pointers. Normally the build attempts to auto-detect the location and name of the library and includes, or
otherwise builds without it. Without it the code still works but uses a less efficient implementation of an integer or pointer
protected by a mutex. If your system has a version of NSPR4 that doesn't get auto-detected, you can still enable it by
changing the settings manually. For example, for Fedora Linux the auto-detected version amountsto the following settings:

TRI CEPS_CONF += - DTRI CEPS_NSPR -1/ usr/incl ude/ nspr4
TRI CEPS XLIB += -1l nspr4

- DTRI CEPS_NSPR tells the code to compile with NSPR support enabled, and the other settings give the location of the
includes and of the library.

The other build options require only the - D settings.
TRI CEPS_CONF += - DTRI CEPS_NS=Tri cepsM/Ver si on
Changes the namespace of Triceps.

TRI CEPS_CONF += - DTRI CEPS_BACKTRACE=f al se

Build configuration settings 17

Disables the use of the glibc stack backtrace library (it's a standard part of glibc nowadays but if you use anon-GNU libc,
you might have to disable it). This library is used to make the messages on fatal errors more readable, and let you find
the location of the error easier.

18 Building Triceps

Chapter 4. APl Fundamentals

4.1. Languages and layers

As mentioned before, at the moment Triceps provides the APIsin C++ and Perl. They are similar but not quite the same,
because the nature of the compiled and scripted languages is different. The C++ API is more direct and expects discipline
from the programmer: if some incorrect arguments are passed, everything might crash. The Perl API should never crash.
It should detect any incorrect use and report an orderly error. Besides, the idioms of the scripted languages are different
from the compiled languages, and different usages become convenient.

So far only the Perl API is documented in this manual. Itsis considered the primary one for the end users, and also richer
and easier to use. The C++ API will be documented aswell, just it didn't make the cut for theversion 1.0. If you'reinterested
in the C++ API, read the Perl documentation first, to understand the ideas of Triceps, and then look in the source code.
The C++ classes have very extensive comments in the header files.

The Perl API isimplemented in XS. Some people, may wonder, why not SWIG? SWIG would automatically export the API
into many languages, not just Perl. The problem with SWIG isthat it just maps the APl one-to-one. And this doesn't work
any good, it makes for some very ugly APIswith abilities to crash from the user code. Which then have to be wrapped into
more scripting code before they become usable. So then why bother with SWIG, it'seasier to just usethe scripting language's
native extension methods. Another benefit of the native XS support is the access to the correct memory management.

In general, I've tried to avoid the premature optimization. The idea is to get it working at all first, and then bother about
working fast. Except for the caseswhen the need for optimization |ooked obvious, and thelogic intertwined with the general
design strongly ehough, that if done one way, would be difficult to change in the future. We'll see, if these “obvious’ cases
really turn out to be the obvious wins, or will they become a premature-optimization mess.

There is usually more than one way to do something in Triceps. It has been written in layers: Thereisthe C++ API layer
on the bottom, then the Perl layer that closely parallelsit, then more of the niceties built in Perl. There is more than one
way to organize the manual, structuring it by features or by layers. Eventually | went in the order of the major features,
discussing each one of them at various layers.

I've also tried to show, how these layers are built on top of each other and connected. Which might be too much detail for
the first reading. If you feel that something is going over your head, just skim over it. It could be marked more clearly but
| don't like this kind of marking. | hate the side-panels in the magazines. | like the text to flow smoothly and sequentially.
| don't like the “simplifications’ that distort the real meaning and add all kinds of confusion. | like having all the details|
can get, and then | can skip over the ones that look too complicated (and read them again when they start making sense).

Also, amajor goal of Triceps is the extensibility. And the best way to learn how to extend it, is by looking up close at
how it has already been extended.

4.2. Errors, deaths and confessions

When the Perl API of Triceps detects an error, it makes the interpreter die with an error message. Unless of course you
catch it with eval . The message includes the call stack as the method Car p: : conf ess() would. conf ess() isa
very useful method that helps a lot with finding the source of the problem, it's much better than the plain di e() . Triceps
uses internally the methods from Carp to build the stack trace in the message. But it also does one better: it includes the
stack of the Triceps label calsinto the trace.

You are welcome to use conf ess directly aswell, it's typically done in the following pattern:

&soneFunction() or confess "Error nessage";
&soneFunction() or confess "Error nessage: $!";

Thisiswhat the Triceps methods implemented in Perl do. The variable $! contains the error messages from the methods
that deal with the system errors. To require the package with conf ess, do:

19

use Carp;

The full description of Carp is available at http://perldoc.perl.org/Carp.html. It has more functions, however | find the full
stack trace the most helpful thing in any case.

There aso are modules to make al the cases of di e work like confess, Devel :: Sinpl eTrace and
Car p: : Always. They work by intercepting the pseudo-signls = WARN _ and _ DIE . The logic of
Car p: : Al ways ispretty simple, see http://cpansearch.perl.org/src/FERREIRA/Carp-Always-0.11/lib/Carp/Always.pm,
so if you're not feeling like installing the module, you can easily do the same directly in your code.

If you want to intercept the error to add more information to the message, use eval :

eval { $self->{unit}->call($rowop) }
or confess "Bad rowop argument:\n$@;

| have some better ideas about reporting the errorsin the nested templated but they need to beimplemented and tried out yet.

A known problem with conf ess in athreaded program is that it leaks the scalars, apparently by leaving garbage on the
Perl stack, even when intercepted with eval . It's actually not a problem when the confession is not intercepted, then the
program exits anyway. But if confessing frequently and catching these confessions, the leak can accumulate to something
noticesble.

The problem seemsto beintheline
package DB;

in the middle of one of itsinternal functions. Perhaps changing the package in the middle of afunction is not such a great
idea, leaving some garbage on the stack. The most interesting part is that this line can be removed altogether, with no
adverse effects, and then the leak stops. So be warned and don't be surprised. Maybe it will get fixed.

Now let's look at how the C++ parts of Triceps interact with confessions. When the Perl code inside a label or tracer or
aggregator or index sorting handler dies, the C++ infrastructure around it catchesthe error. It unrollsthe stack trace through
the C++ code and passesthe di e request to the Perl code that called it. If that Perl code was called through another Triceps
C++ code, that C++ code will catch the error and continue unrolling the stack and reporting back to Perl. When one Perl
label calls another Perl label that calls the third Perl 1abel, the call sequence goesin layers of Perl—C++—Perl—C++—
Perl—C++—Perl. If that last label has its Perl code die and there are no eval s in between, the stack will be correctly
unwound back through all these layers and reported in the error message. The C++ code will include the reports of &l the
chained label callsaswell. If one of the intermediate Perl layers wraps the call in eval , it will receive the error message
with the stack trace up to that point.

More of the error handling details will be discussed later in Section 7.5: “Error handling during the execution” (p. 44)
and Section 10.8: “Error reporting in the templates’ (p. 141) .

4.3. Memory management fundamentals

The memory is managed in Triceps using the reference counters. Each Triceps object has a reference counter in it. In
C++ thisis done explicitly, in Perl it gets mostly hidden behind the Perl memory management that al so uses the reference
counters. Mostly.

In C++the Autoref templateisused to produce the reference objects. The memory management at the C++ level isdescribed
in more detail in Section 20.3: “Memory management in the C++ APl and the Autoref reference” (p. 426) As the
references are copied around between these objects, the reference counts in the target objects are automatically adjusted.
When the reference count drops to 0, the target object gets destroyed. While there are live references, the object can't get
destroyed from under them. All nice and well and simple, however still possible to get wrong.

The major problem with the reference counters is the reference cycles. If object A has a reference to object B, and object
B has areference (possibly, indirect) to object A, then neither of them will ever be destroyed. Many of these cases can be

20 API Fundamentals

http://perldoc.perl.org/Carp.html
http://cpansearch.perl.org/src/FERREIRA/Carp-Always-0.11/lib/Carp/Always.pm

resolved by keeping areference in one direction and a plain pointer in the other. This of course introduces the problem of
hanging pointers, so extra care has to be taken to not reference them. There also are the unpl easant situationswhen thereis
absolutely no way around the reference cycles. For example, the Triceps label's method may keep a reference to the next
label, where to send its processed results. If the labels are connected into aloop (a perfectly normal occurrence), thiswould
cause a reference cycle. Here the way around is to know when all the labels are no longer used (before the thread exit),
and explicitly tell them to clear their references to the other labels. This breaks up the cycle, and then bits and pieces can
be collected by the reference count logic.

The reference cycle problem can be seen all the way up into the Perl level. However Triceps provides the ready solutions
for itstypical occurences. To explain it, more about Triceps operation has to be explained first, so it's described in detail
later in Chapter 8: “Memory Management” (p. 77) .

The reference counting may be single-threaded or multi-threaded. If an object may only be used inside one thread, the
references to it use the faster single-threaded counting. In C++ it's real important to not access and not reference the
single-threaded objects from multiple threads. In Perl, when a new thread is created, only the multithreaded objects from
the parent thread become accessible for it, the rest become undefined, so theissue gets handled automatically (as of version
1.0 even the potentially multithreaded objects are still exported to Perl as single-threaded, with no connection between
threads yet).

The C++ objects are exported into Perl through wrappers. The wrappers perform the adaptation between Perl reference
counting and Triceps reference counting, and sometimes more of the helper functions. Perl sees them as blessed objects,
from which you can inherit and otherwise treat like normal objects.

When we say that a Perl variable $| abel containsa Triceps label object, it really means that it contains areferece to a
label object. When it gets copied like $I abel 2 = $I abel , this copies the reference and now both variables refer to
the same label object (more exactly, even to the same wrapper object). Any changesto the object’s state done through one
reference will also be visible through the other reference.

When the Perl references are copied between the variables, this increases the Perl reference count to the same wrapper
object. However if an object goesinto the C++ land, and then is extracted back (such as, create a Rowop from a Row, and
then extract the Row from that Rowop), a brand new wrapper gets created. It's the same underlying C++ object but with
multiple wrappers. You can't tell that it's the same object by comparing the Perl references, because they may be pointing
to the different wrappers. However Triceps provides the method same() that compares the data inside the wrappers. It
can be used as

$rowl- >sane($r ow2)
and if it returns true, then both $r owl and $r ow2 point to the same underlying row.

Note also that if you inherit from the Triceps objects and add some extra data to them, none of that data nor even your
derived classes identity will be preserved when anew wrapper is created from the underlying C++ object.

4.4. Code references and snippets

Many of the Triceps Perl API objects accept the Perl code arguments, to be executed as needed. This code can be specified
as either afunction reference or a string containing the source code snippet. The major reason to accept the argumentsin
the source code format is the ability to pass them through between the threads, which cannot be done with the compiled
code. See more information on that in Section 16.4: “Object passing between threads’ (p. 299) .

Only afew of the classes can be exported between the threads but for consistency all the classes support the code arguments
in either format. This feature is built into the general way the Triceps XS methods handle the code references.

The following examples are equivalent, one using a function reference, another using a source code snippet. Of course,
if you know that the created object will be exported to another thread, you must use the source code format. Otherwise
you can take your pick.

$it= Triceps::|ndexType->newPerl| Sorted("b_c", undef,

Code references and snippets 21

sub {
ny $res = ($_[0]->get("b") <=> $_[1]->get("b")
[l $_[0]->get("c") <=> $_[1]->get("c"));
return $res;

}
)

$it= Triceps::|ndexType->newPerl| Sorted("b_c", undef,

ny $res = ($_[0]->get("b") <=> $_[1]->get("b")
[l $_[0]->get("c") <=> $_[1]->get("c"));
return $res;

);
Asyou can see, when specifying the handler as source code, you must specify only thefunction body, andthesub { ... }
will be wrapped around it implicitly. Including the sub would be an error.

There are other differences between the code references and the source code format:

When you compile a function, it carries with it the lexical context. So you can make the closures that refer to the “my”
variables in their lexical scope. With the source code snippets you can't do this. The source code gets compiled in the
context of the main package, and that's all they can see. In some cases, it might not even be compiled immediately. If an
object has an explicit initialization, the code snippets get compiled at the initialization time. And if the object is exported
to another thread, the code snippets will be re-compiled when an object's copy is created and initialized in that another
thread. Remember also that the global variables are not shared between the threads, so if you refer to aglobal variablein
the code snippet and rely on avalue in that variable, it won't be present in the other threads (unless the other threads are
direct descendants and the value was set before their creation).

The code written in Perl can make use of the source code snippets as well. If it just passes these code arguments to the XS
methods, it will get this support automatically. But if it wants to call these snippets directly from the Perl code, Triceps
provides a convenience method that would accept the code in either format and compileit if needed:

$code = Triceps:: Code:: conpil e($code_ref _or_source);

It takes either a code reference or a source code string as an argument and returns the reference to the compiled code. If
the argument was a code reference, it just passes through unchanged. If it was a source code snippet, it gets compiled (and
therules are the same, the text getsthesub { ... } wrapper added around it implicitly).

If the argument was an undef , it also passes through unchanged. This is convenient in case if the code is optional. But
if it isn't then the caller should check for undef .

If the compilation fails, the method confesses, and includes the error and the source code into the message, in the same
way asthe XS methods do.

The optional second argument can be used to provide information about the meaning of the code for the error messages.
If it's undefined then the default is “ Code snippet”:

$code = Triceps:: Code:: conpil e($code_ref_or_source, $description);
For example, if the code represents an error handler, the call can be done asfollows:

$code = Triceps:: Code:: conpil e($code, "Error handler");

4.5. Triceps constants

Triceps has a number of symbolic constants that are grouped into essentially enums. The constants themselves will be
introduced with the classes that use them, but here is the general description common to them all.

22 API Fundamentals

In Perl they al are placed into the same namespace. Each group of constants (that can be thought of as an enum) getsiits
name prefix. For example, the operation codes are all prefixed with OP_, the enqueueing modes with EM _, and so on.

Theunderlying constantsare all integer. The way to give symbolic namesto constantsin Perl isto define afunction without
arguments that would return the value. Each constant has such a function defined for it. For example, the opcode for the
“insert” operation isthe result of function Tr i ceps: : OP_I NSERT.

Most methods that take constants as arguments are also smart enough to recognise the constant names as strings, and
automatically convert them to integers. For example, the following calls are equivalent:

$l abel - >makeRowop(&Tri ceps: : OP_I NSERT, ...);
$l abel - >makeRowop(" OP_I NSERT", ...);

For a while I've thought that the version with Tri ceps: : OP_I NSERT would be more efficient and might check for
correctness of the name at compile time. But as it turns out, no, on both counts. The look-up of the function by name
happens at run time, so there is no compile-time check. And that look-up happensto be alittle slower than the one done by
the Triceps C++ code, so thereisno win there either. The string version isnot only shorter but also more efficient. The only
win with the function isif you call it once, remember the result in avariable and then reuse. Unless you're chasing the last
few percent of performance in atight loop, it's not worth the trouble. Perhaps in the future the functions will be replaced
with the module-level variables: that would be both faster and allow the compile-time checking withuse strict.

What if you need to print out aconstant in amessage? Triceps providesthe conversion functionsfor each group of constants.
They generally arenamed Tr i ceps: : sonet hi ngSt ri ng. For example,

print &Triceps::opcodeString(&Triceps:: OP_I NSERT);

would print “OP_INSERT”. If the argument is out of range of the valid enums, it would confess. Thereis also aversion
of these functions ending with Saf e:

print &Triceps::opcodeStringSafe(&Triceps:: OP_I NSERT) ;

The differenceisthat it returnsundef if the input valueis out of range, thus being safe from confessions.

There dso are functions to convert from strings to constant values. They generaly are named
Tri ceps::stringSonet hi ng. For example,

&Triceps: :stringOpcode(" OP_I NSERT")
&Triceps: :stringOpcodeSaf e(" OP_I NSERT")

would return the integer value of Tri ceps: : OP_I NSERT. If the string name is not valid for this kind of constants, it
would also either confess without Saf e in the name or return undef withit.

4.6. Printing the object contents

When debugging the programs, it's important to find from the error messages, what is going on, what kinds of objects are
getting involved. Because of this, many of the Triceps objects provide away to print out their contentsinto a string. This
is done with the method pri nt () . The simplest useis asfollows:

$message = "Error in object " . $object->print();

Most of the objects tend to have a pretty complicated internal structure and are printed on multiple lines. They look better
when the components are appropriately indented. The default call printsasif the basic message is un-indented, and indents
every extralevel by 2 spaces.

This can be changed with extra arguments. The genera format of pri nt () is

$obj ect->print ([$i ndent, [$subindent]])

Printing the object contents 23

where $indent istheinitial indentation, and $subindent is the additional indentation for every level. The default pri nt ()
isequivalenttoprint("", " ").

A special caseis
$obj ect - >pri nt (undef)
It prints the object in asingle line, without line breaks.

Here is an example of how arow type object would get printed. The details of the row types will be described later, for
now just assume that arow type is defined as:

$rtl = Triceps:: Rowlype- >new
a => "uint8",
b => "int32",
c => "int64",
d => "fl oat 64",
e => "string",

)
Then$rt 1->print () produces:

row {
uint8 a,
int32 b,
inté4 c,
float64 d,
string e,

}
With extraarguments$rt 1- >print ("++", "--"):

row {
++--uint8 a,
++--int32 b,
++--int64 c,
++--fl oat 64 d,
++--string e,
++}

Thefirst line doesn't have a“++” because the assumption is that the text gets appended to some other text aready on this
line, so any prefixes are used only for the following lines.

And finally with an undef argument $rt 1- >pri nt (undef):

row{ uint8 a, int32 b, int64 c, float64 d, string e, }

The Rows and Rowops do not havethepri nt () method. That'slargely because the C++ code does not deal with printing
the actual data, thisis left to the Perl code. So instead they have the method pri nt P() that does a similar job. Only
it's simpler and doesn't have any of the indenting niceties. It always prints the data in asingle line. The “P” in “printP”
standsfor “Perl”. The nameis also different because of thislack of indenting niceties. See more about it in the Section 5.4:
“Rows” (p. 30) .

4.7. The Hungarian notation

The Hungarian notation is the idea that the name of each variable should be prefixed with some abbreviation of itstype. It
has probably become most widely known from the Microsoft operating systems.

Overall it's a complete abomination and brain damage. But I'm using it widely in the examplesin this manual. Why? The
problem isthat there usually too many components for one logical purpose. For atable, there would be arow type, atable

24 API Fundamentals

type, and thetableitself. Rather than inventing separate namesfor them, it's easier to have acommon name and an uniform
prefix. Eventually something better would have to be done but for now I've fallen back on the Hungarian notation. One
possibility isto just not give names to the intermediate entities. Say just have a named table, and then there would be the
the type of the table and the row type of the table.

Among the CEP systems, Tricepsis not unique in the Hungarian notation department. Coral 8/Sybase CCL has this mess of
lots of schemas, input streams, windows and output streams, with the same naming problems. The uniform naming prefixes
or suffixes help making this mess more navigable. | haven't actually used StreamBase but from reading the documentation
| get the feeling that the Hungarian notation is probably useful for its SQL aswell.

4.8. The Perl libraries and examples

The official Triceps classes are collected in the Triceps package (and its subpackages).

However when writing tests and examples|'vefound that there are al so some repesting elements. Initially |'ve been handling
the situation by either combining all examples using such an element into a single file or by copying it around. Then I've
collected all such fragments under the package Triceps::X. X can be thought of as a mark of eXperimental, eXample,
eXtraneous code.

While the code in the official part of the library is extensively tested, the X-code is tested only in its most important
functionality and not in the details. This codeis not exactly of production quality but is good enough for the examples, and
can be used as a starting point for development of the better code. Quite a few fragments of Triceps went this way: the
joins have been done as an example first, and then solidified for the main code base, and so did the aggregation.

One of these modules is Triceps:: X::TestFeed. It's a small infrastructure to run the examples, pretending that it gets the
input from stdin and sends output to stdout, while actually doing it al in memory. All of the more complicated examples
have been written to useit. When you look in the code of the actual running examples and compare it to the code snippetsin
the manual, you can seethe differences. A & eadLi ne showsinstead of <STDI N>, and a&send instead of pri nt (and
for the manual, | have a script that does the reverse substitutions automatically when | insert the code examplesinto it).

The Perl libraries and examples 25

26

Chapter 5. Rows

In Triceps the relational datais stored and passed around as rows (once in awhile | call them records, which is the same
thing here). Each row belongs to a certain type, that defines the types of the fields. Each field may belong to one of the
simple types.

5.1. Simple types

The simple valuesin Triceps belong to one of the simple types:

* uint8

* int32

* int64

* float64

e string

| like the explicit specification of the data size, so it's not some mysterious “double” but an explicit “float64” .

When the data is stored in the rows, it's stored in the strongly-typed binary format. When it's extracted from the rows for
the Perl code to access, it gets converted into the Perl values. And the other way around, when stored into the rows, the
conversion is done from the Perl values.

ui nt 8 isthetypeintended to represent the raw bytes. So, for example, when they are compared, they should be compared
as raw bytes, not according to the locale. Since Perl stores the raw bytes in strings, and its pack() and unpack()

functions operate on strings, The Perl side of Triceps extracts the uint8 values from records into Perl strings, and the other
way around.

The string typeisintended to represent atext string in whatever current locale (at some point it may become aways UTF-8,
this question is open for now).

Perl on the 32-bit machines has an issue with int64: it has no type to represent it directly. Because of that, when the int64
values are passed to Perl on the 32-bit machines, they are converted into the floating-point numbers. This gives only 54
bits (including sign) of precision, but that's close enough. Anyway, the 32-bit machines are obsol ete by now, and Triceps
it targeted towards the 64-bit machines.

On the 64-bit machines both int32 and int64 translate to the Perl 64-bit integers.

Note that there is no specia type for timestamps. As of version 1.0 there is no time-based processing inside Triceps, but
that does not prevent you from passing around timestamps as data and use them in your logic. Just store the timestamps
asintegers (or, if you prefer, as floating point numbers). When the time-based processing will be added to Perl, the planis
to still use the int64 to store the number of microseconds since the Unix epoch. My experience with the time typesin the
other CEP systemsisthat they cause nothing but confusion. In the meantime, the time-based processing is still possible by
driving the notion of time explicitly. It's described in the Chapter 13: “Time processing” (p. 221) .

5.2. Row types

A row typeis created from a sequence of (field-name, field-type) string pairs, for example:

$rtl = Triceps:: RowType- >new
a => "uint8",
b => "int32",

27

c => "int64",
d => "float 64",
e => "string",

)

Even though the pairs ook like a hash, don't use an actua hash to create row types! The order of pairsin ahash is unpre-
dictable, while the order of fieldsin arow type usually matters.

In an actual row the field may have avalue or be NULL. The NULLs are represented in Perl asundef .

The real-world records tend to be pretty wide and contain repetitive data. Hundreds of fields are not unusual, and | know
of acase when an Aleri customer wanted to have records of two thousand fields (and succeeded). Thisjust begsfor arrays.
So the Triceps rows allow the array fields. They are specified by adding “[]” at the end of field type. The arrays may only
be made up of fixed-width data, so no arrays of strings.

$rt2 = Triceps:: RowType- >new(
a=>"uint8[]",
b =>"int32[]",
c =>"int64[]",
d => "float64[]",
e => "string", # no arrays of strings!

The arrays are of variable length, whatever array data passed when arow is created determines its length. The individual
elements in the array may not be NULL (and if undef s are passed in the array used to construct the row, they will be
replaced with 0s). The whole array field may be NULL, and this situation is equivalent to an empty array.

The type uint8 is typically used in arrays, “uint8[]” is the Triceps way to define a blob field. In Perl the “uint8[]” is
represented as a string value, same asa simple “unit8”.

Therest of array values are represented in Perl as references to Perl arrays, containing the actual values.

The row type objects provide away for introspection:

$rt->get def ()

returns back the array of pairs used to create this type. It can be used among other things for the schema inheritance. For
exampl e, the multi-part messages with daily unique ids can be defined as:

$rt MsgKey = Triceps:: RowType- >new(
date => "string",

id=>"int32",

)

$rtMsg = Triceps:: RowType- >new(
$rt MsgKey- >get def (),

from=> "string",

to => "string",

subj ect => "string",

)

$rtMsgPart = Triceps:: RowlType- >new(
$rt MsgKey- >get def (),

type => "string",

payl oad => "string",

)
The meaning here is the same as in the CCL example:

create schema rt MsgKey (

28 Rows

string date,
integer id
)
create schenma rtMsg inherits fromrtMgKey (
string from
string to,
string subject
)
create schema rtMsgPart inherits fromrtMgKey (
string type,
string payl oad
)

The grand plan is to provide some better ways of defining the commonality of fields between row types. It should include
the ability to rename fields, to avoid conflicts, and to remember this equivalence to be reused in the further joins without
the need to write it over and over again. But it has not come to the implementation stage yet.

The other methods are:

$rt->get Fi el dNanes()

returns the array of field names only.
$rt->get Fi el dTypes()

returns the array of field types only.
$rt - >get Fi el dMappi ng()

returns the array of pairs that map the field names to their indexes in the field definitions. It can be stored into a hash and
used for name-to-index tranglation. It's used mostly in the templates, to generate code that accesses data in the rows by
field index (which is more efficient than access by name). For example, for r t MsgKey defined above it would return
(date => 0, id => 1).

5.3. Row types equivalence

The Triceps objects are usually strongly typed. A label handles rows of a certain type. A table stores rows of a certain type.
However there may be multiple ways to check whether arow fits for a certain type:

It may be arow of the exact same type, created with the same RowType object.

It may be arow of another type but one with the exact same definition.

* It may be arow of another type that has the same number of fields and field types but different field names. The field
names (and everything else in Triceps) are case-sensitive.

The row types may be compared for these conditions using the methods:

$rtl->same($rt2)
$rt1->equal s($rt2)
$rt1->match($rt2)

The comparisons are hierarchical: if two type references are the same, they would also be equal and matching; two equal
types are also matching.

Most of the objects would accept the rows of any matching type (this may change or become adjustable in the future).
However if the rows are not of the same type, this check involves a performance penalty. If the types are the same, the
comparison is limited to comparing the pointers. But if not, then the whole type definition has to be compared. So every
time arow of adifferent typeis passed, it would involve the overhead of type comparison.

Row types equivalence 29

For example:

ny @chema = (
a => "int32",
b => "string"

)

ny $rtl = Triceps:: RowType->new @chenn);
$rt2 is equal to $rtl: sane field names and field types
ny $rt2 = Triceps: : RowType->new @chenn);

$rt3 matches $rtl and $rt2: same field types but different nanes
ny $rt3 = Triceps:: RowType- >new(

A => "int32",

B => "string"

)

my $lab = $unit->makeDummylLabel ($rt1, "lab");

sane type, efficient

ny $ropl = $l ab- >makeRowop(&Tri ceps: : OP_I NSERT,
$rt1->makeRowArray(1, "x"));

different row type, involves a conparison overhead

ny $rop2 = $l ab- >makeRowop(&Tri ceps: : OP_I NSERT,
$rt2->makeRowArray(1, "x"));

different row type, involves a conparison overhead

ny $rop3 = $l ab- >makeRowop(&Tri ceps: : OP_I NSERT,
$rt3->makeRowArray(1, "x"));

A dummy label used hereis alabel that does nothing (its usefulness will be explained later).

Once the Rowop is constructed, no further penalty is involved: the row in the Rowop is re-typed to the type of the label
from now on. It's physically still the same row with another reference to it, but when you get it back from the Rowop, it
will have the label's type. It's all a part of the interesting interaction between C++ and Perl. All the type checking is done
in the Perl XS layer. The C++ code just expects that the data is always right and doesn't carry the types around. When the
Perl code wants to get the row back from the Rowop, it wants to know the type of the row. The only way to get it isto
look, what is the label of this Rowop, and get the row type from the label. This is also the reason why the types have to
be checked when the Rowop is constructed: if a wrong row is placed into the Rowop, there will be no later opportunity
to check it for correctness, and bad data may cause a crash.

5.4. Rows

The rows in Triceps always belong to some row type, and are always immutable. Once a row is created, it can not be
changed. This allows it to be referenced from multiple places, instead of copying the whole row value. Naturally, a row
may be passed and shared between multiple threads.

The row type provides the constructor methods for the rows:

$row
$row

$rowType- >nmakeRowArray(@i el dval ues) ;
$r owType- >makeRowHash($f i el dNane => $fi el dvalue, ...);

Here $r owis areference to the resulting row. As usual, in case of error it will confess.

In the array form, the values for the fields go in the same order as they are specified in the row type (if there are too few
values, therest will be considered NULL, having too many valuesis an error).

The Perl value of undef istreated as NULL.

In the hash form, the fields are specified as name-value pairs. If the same field is specified multiple times, the last value
will overwrite al the previous ones. The unspecified fields will be left as NULL. Again, the arguments of the function
actually are an array, but if you pass a hash, its contents will be converted to an array on the call stack.

30 Rows

If the performance is important, the array form is more efficient, since the hash form has to trandate internally the field
names to indexes.

The row itself and its type don't have any concept of keysin general and of the primary key in particular. So any fields
may beleft asNULL. Thereisno “NOT NULL" constraint.

Some examples:

$row = $rowType->makeRowArray(@i el ds);

$row = $rowType- >nmakeRowArray($a, $b, $c);
$row = $rowType- >nmakeRowHash(% i el ds) ;

$row = $rowType- >makeRowHash(a => $a, b => $b);

The usua Perl conversions are applied to the values. So for example, if you pass an integer 1 for astring field, it will be
converted to the string “1”. Or if you passastring “” for an integer field, it will be converted to 0.

If afieldisan array (asalways, except for ui nt 8[]| whichisrepresented asaPerl string), itsvalueisaPerl array reference
(or undef). For example:

$rtl = Triceps:: RowlType- >new(
a =>"uint8[]",
b => "int32[]",
);
$row = $rt1->makeRowArray("abcd", [1, 2, 3]);

An empty array will become a NULL value. So the following two are equivalent:

$row
$row

$rt 1- >makeRowAr ray("abcd", []);
$rt 1- >makeRowAr ray("abcd", undef);

Remember that an array field may not contain NULL values. Any undef sin the array fields will be silently converted
to zeroes (since arrays are supported only for the numeric types, a zero value would always be available for all of them).
The following two are equivalent:

$row
$row

$rt1- >makeRowArray("abcd", [undef, undef]);
$rt1- >makeRowArray("abcd", [0, 0]);

Therow aso provides away to copy itself, modifying the values of selected fields:
$row2 = $rowl- >copynod($fi el dNane => $fiel dvalue, ...);

The fields that are not explicitly specified will be left unchanged. Since the rows are immutable, this is the closest thing
to the field assignment. copynod() is generally more efficient than extracting the row into an array or hash, replacing
afew of them with new values and constructing a new row. It bypasses the binary-to-Perl-to-binary conversions for the
unchanged fields.

The row knows its type, which can be obtained with
$row >get Type()

Note that thiswill create a new Perl wrapper to the underlying type object. So if you do:

$rtl1 = ...;
$row = $rt1->makeRow. . . ;
$rt2 = $row >get Type();

then $r t 1 will not be equal to $r t 2 by the direct Perl comparison ($rt1 ! = $rt 2). However both$rt 1 and $rt 2
will refer to the same row type object, so $rt 1- > ; same($rt 2) will betrue.

The row references can also be compared for sameness:

$rowl- >sane($r ow2)

Rows 31

The row contents can be extracted back into Perl representation as

@dat a
Uhdat a

$row >t oArray();
$r ow >t oHash() ;

Again, the NULL fields will become undef s, and the array fields (unless they are NULL) will become Perl array refer-
ences. Since the empty array fields are equivalent to NULL array fields, on extraction back they will be treated the same
as NULL fields, and become undef s.

Thereis also aconvenience function to get one field from arow at atime by name:
$val ue = $row >get ("fi el dNanme");

If you need to access only a few fields from a big row, get () is more efficient (and easier to write) that extracting the
whole row witht oHash() or evenwitht oArray() . But don't forget that every timeyou call get () , it creates anew
Perl value, which may be pretty involved if the value is an array. So the most efficient way then for the values that get
reused many timesisto cal get (), remember the result in a Perl variable, and then reuse that variable.

Thereis aso away to conveniently print arows contents, usually for the debugging purposes:

$result = $row >printP();

Thename pr i nt Pisan artifact of implementation: it shows that this method isimplemented in Perl and uses the default
Perl conversions of values to strings. The ui nt 8[] arrays are printed directly as strings. The result is a sequence of

nane="val ue" or nane=["val ue", "value", "value"] foral the non-NULL fields. The backslashes and
double quotes inside the values are escaped by backslashesin Perl style. For example, reusing the row type above,

$row = $rtl->makeRowArray('ab\ "cd"', [0, 0]);
print $row>printP(), "\n";

will produce

a="ab\\ \"cd\"" b=["0", "0"]

It's possible to check quickly if all the fields of arow are NULL:
$result = $row >i sEnpty();

It returns 1 if all thefieldsare NULL and O otherwise.

Finally, there is a deep debugging method:

$result = $row >hexdunp()

That dumps the raw bytes of the row's binary format, and is useful only to debug the more weird issues.

32 Rows

Chapter 6. Labels and Row Operations

6.1. Labels basics

In each CEP engine there are two kinds of logic: One is to get some request, look up some state, maybe update some
state, and return the result. The other has to do with the maintenance of the state: make sure that when one part of the
state is changed, the change propagates consistently through the rest of it. If we take acommon RDBM S for an analog, the
first kind would be like the ad-hoc queries, the second kind will be like the triggers. The CEP engines are very much like
database engines driven by triggers, so the second kind tends to account for alot of code.

Thefirst kind of logic is often very nicely accommodated by the procedural logic. The second kind often (but not always)
can benefit from amore relational, SQLY definition. However the SQLY definitions don't stay SQLY for long. When every
every SQL statement executes, it getscompiled first into the procedural form, and only then executes asthe procedural code.

The Triceps approach is tilted toward the procedural execution. That is, the procedural definitions come out of the box,
and then the high-level relational logic can be defined on top of them with the templates and code generators.

These bits of code, especially where the first and second kind connect, need some way to pass the data and operations
between them. In Triceps these connection points are called Labels.

The streaming data rows enter the procedural logic through a label. Each row causes one call on the label. From the
functional standpoint they are the same as Coral8 Streams, as has been shown in Section 1.4: “We're not in 1950s any
more, or are we?’ (p. 3) . Except that in Triceps the labels receive not just rows but operations on rows, as in Aleri: a
combination of arow and an operation code.

They are named “labels’ because Triceps has been built around the more procedural ideas, and when looked at from that
side, the labels are targets of calls and GOTOs.

If the streaming model is defined as a data flow graph, each arrow in the graph is essentially a GOTO operation, and each
nodeisalabel.

A Tricepslabel isnot quiteaGOTO label, sincethe actual procedural control always returns back after executing the label's
code. It can be thought of as alabel of afunction or procedure. But if the caller does nothing but immedially return after
getting the control back, it works very much like a GOTO label.

Each label accepts operations on rows of a certain type.

Each label belongs to a certain execution unit, so alabel can be used only strictly inside one thread and can not be shared
between threads.

Each label may have some code to execute when it receives arow operation. The labels without code can be useful too.

A Triceps model contains the straightforward code and the mode complex stateful elements, such as tables, aggregators,
joiners (which may be implemented in C++ or in Perl, or created as user templates). These stateful elements would have
some input labels, where the actions may be sent to them (and the actions may also be done as direct method calls), and
output labels, where they would produce the indications of the changed state and/or responses to the queries. Thisis shown
inthe diagramin Figure 6.1 . The output labels are typically the ones without code (* dummy labels™). They do nothing by
themselves, but can pass the data to the other labels. This passing of data is achieved by chaining the labels: when alabel
iscalled, it will first execute its own code (if it has any), and then call the same operation on whatever labels are chained
fromit. Which may have more labels chained from them in turn. So, to pass the data, chain the input label of the following
element to the output label of the previous element.

33

Input label

Element A

Output label

chaining

Input label Input label

Element B Element C

Output label Output label

Figure6.1. Stateful elementswith chained labels.

The make things clear, alabel doesn't have to be a part of a stateful element. The labels absolutely can exist by themselves.
It'sjust that the stateful elements can use the labels as their endpoints.

6.2. Label construction

The execution unit provides methods to construct labels. A dummy label is constructed as:
$l abel = $unit - >makeDunmyLabel ($rowType, "nane");

It takes as arguments the type of rows that the label will accept and the symbolic name of the label. Asusual, the name can
be any but for the ease of debugging it's better to give the same name as the label variable.

The label with Perl code is constructed as follows:

$l abel = $unit->nmakelLabel ($rowType, "nane", $cl ear Sub,
$execSub, @args);

Therow type and name argumentsarethe same asfor thedummy label. Thefollowing two arguments providethereferences
to the Perl functions that perform the actions. They can be specified as a function reference or a source code string, see
Section 4.4: “ Code references and snippets’ (p. 21) . $exec Sub isthefunction that executes to handle the incoming rows.
It gets the arguments:

&PpexecSub($l abel , $rowop, @rgs)

Here $l abel isthislabel, $r owop isthe row operation, and @r gs are the same as extra arguments specified at the
label creation.

The row operation actually contains the label reference, so why pass it the second time? The reason lies in the chaining.
The current label may be chained, possibly through multiple levels, to some original label, and the rowop will refer to that
original label. The extraargument lets the code find the current label.

34 Labels and Row Operations

$cl ear Sub isthe function that clears the label. It will be explained in the Section 8.2: “Clearing of the labels’ (p. 78)
Either of $execSub and $cl ear Sub can be specified as undef . Though alabel with an undefined $exec Sub makes
the label useless for anything other than clearing. On an attempt to send datato it, it will complain that the label has been
cleared. The undefined $cl ear Sub causes the function Tri ceps: : cl ear Args() to be used as the default, which
provides the correct reaction for most situations.

There is a special convenience constructor for the labels that are used only for clearing an object (their usefulness is
discussed in Section 8.2: “Clearing of the labels” (p. 78)).

$l b = $uni t->maked eari ngLabel ("nane", @rgs);

The arguments would be the references to the objects that need clearing, usually the object's $sel f . They will be cleared
withTri ceps: : cl ear Args() whenthelabel clearing gets called.

6.3. Other label methods

The chaining of labelsis done with the method:

$l abel 1- >chai n($l abel 2);

$l abel 2 becomeschained to $| abel 1. A label can not be chained to itself, neither directly nor through other interme-
diate labels. The row types of the chained labels must be equal (thisis more strict than for queueing up the row operations
for labels, and might change one or the other way in the future).

When $I abel 1 executes, itschained labelswill normally be executed in the order they were chained. However sometines
it's necessary to add alabel to the chain later but have it called first. Thisis done with the method:

$l abel 1- >chai nFront ($l abel 2);

It chains $I abel 2 at the start of the chain. Of course, if more labels will be chained at the front afterwards, $I abel 2
will be called only after them. But usually thereisaneed for only one such label, and it's usually connected to the FnReturn
and Facet objects. For an example, see Section 16.3: “Multithreaded pipeline” (p. 292) .

A label's chainings can be cleared with

$l abel 1- >cl ear Chai ned() ;

It returns nothing, and clears the chainings from this label. There is no way to unchain only some selected labels.
To check if there are any |abels chained from this one, use:

$result = $l abel - >hasChai ned();

The same check can be done with

@hai n = $l abel - >get Chai n() ;

if ($#chain >=0) { ... }

but hasChai ned() ismore efficient since it doesn't have to construct that intermediate array.
Thereis also a convenience method that creates a new label by chaining it from an existing label:
$l abel 2 = $l abel 1- >makeChai ned($nanme, $subC ear, $subExec, @rgs);

The arguments are very much the sasme asin Uni t : : makelLabel (), only there is no need to specify the row type for
the new label (nor obviously the Unit), these are taken from the original label. It's really awrapper that finds the unit and
row typefrom| abel 1, makesanew label, and then chainsit off | abel 1.

Other label methods 35

The whole label can be cleared with
$l abel - >cl ear () ;

Thisis fully equivalent to what happens when an execution unit clears the labels: it calls the clear function (if any) and
clears the chainings. Note that the labels that used to be chained from this one do not get cleared themselves, they're only
unchained from this one. To check whether the label has been already cleared use:

$result = $l abel ->i sCl eared();

Labels have the usual way of comparing the references:

$l abel 1- >sane($I abel 2)
returns true if both references point to the same label object.

The labels introspection can be done with the methods:

$rowType = $l abel - >get Type();
$rowType = $| abel - >get RowType();
$unit = $l abel ->get Unit();

$nane = $I abel - >get Nanme() ;

@hai nedLabel s = $I abel - >get Chai n() ;
$execSubRef = $l abel - >get Code();

The methods get Type() and get RowType() arethe same, they both return the row type of the label. get Type()
is shorter, which looked convenient for awhile, but get RowType() hasthe name consistent with the rest of the classes.
This consistency comes useful when passing the objects of various typesto the same methods, using the Perl's name-based
polymorphism. For now both of them are present, but get Type() will likely be deprecated in the future.

If the label has been cleared, get Uni t () will return an undef . get Chai n() returns an array of references to the
chainedlabels. get Code() isactually half-donebecauseit returnsjust the Perl function reference to the execution handler
but not itsarguments, nor referenceto the clearing function. 1t will be changed in the futureto fix theseissues. get Code()
is not applicable to the dummy labels, and would return an undef for them.

Thelabelsactually exist in multiple varieties. The underlying common denominator isthe C++ class Label. This class may
be extended and the resulting label s embedded into the C++ objects. These labels can be accesses and controlled from Perl
but their logic is hardcoded in their objects and is not directly visible from Perl. The dummy labels are a subclass of |abels
in general, and can be constructed directly from Perl. Another subclass is the labels with the Perl handlers. They can be
constructed from Perl, and really only from Perl. The C++ code can access and control them, in a symmetrical relation.
The method get Code() has meaning only on these Perl labels. Finally, the clearing labels also get created from Perl,
and fundamentally are Perl labels with many settings hardcoded in the constructor. get Code() can be used on them too
but since they have no handler code, it would always return undef .

Thereis aso away to change alabel's name:

$l abel - >set Nane($nane) ;

It returns nothing, and there is probably no reason to call it. It will likely be removed in the future.
The label also provides the constructor methods for the row operations, which are described below.

And for completeness I'll mention the methods used to mark the label as non-reentrant and to read this mark back. They
will be described in detail in Section 7.13: “Recursion control” (p. 74) .

$l abel - >set NonReentrant () ;
$val = $l abel - >i sNonReentrant () ;

6.4. Row operations

36 Labels and Row Operations

A row operation (also known as rowop) in Tricepsis an unit of work for alabdl. It's always destined for a particular label
(which could also pass the rowop to its chained labels), and has a row to process and an opcode. The opcodes will be
described momentarily in the Section 6.5: “Opcodes” (p. 38) .

A row operation is constructed as:
$rowop = $l abel - >makeRowop($opcode, $row) ;

Theopcode may be specified aninteger or asastring. Historically, thereisal so an optional extraargument for the enqueuing
mode but it's already obsolete, so | don't show it here.

Since the labels are single-threaded, the rowops are single-threaded too. The rowops are immutable, just as the rows are.
It's possible to keep arowop around and call it over and over again.

A rowop can be created from abunch of fieldsin an array or hash form in two steps:

$rowop = $l abel - >makeRowop($opcode, $rt - >makeRowHash(
$fiel dName => $fieldvalue, ...));
$rowop = $l abel - >makeRowop($opcode, $rt->makeRowArray(@i el ds));

Since this kind of creation happens fairly often, writing out these calls every time becomes tedious. The Label provides
the combined constructors to make life easier:

$r owop
$r owop

$l abel - >makeRowopHash($opcode, $fiel dName => $fiel dvalue, ...);
$l abel - >makeRowopAr r ay($opcode, @i el ds);

Note that they don't need the row type argument any more, because the label knows the row type and providesit. Internally
these methods are currently implemented in Perl, and just wrap the two callsinto one. In the future they will be rewritten
in C++ for greater efficiency.

There aso are the methods that create arowop and immediately call it. They will be described with the execution unit.

A copy of rowop (not just another reference but an honest separate copied object) can be created with:
$rowop2 = $rowopl->copy();

However, since the rowops are immutable, a reference is just as good as a copy. This method is historic and will likely
be removed or modified.

A more interesting operation is the rowop adoption: it is a way to pass the row and opcode from one rowop to another
new one, with adifferent label.

$rowop2 = $l abel - >adopt ($r owopl) ;

It is very convenient for building the label handlers that pass the rowops to the other labels unchanged. For example, a
label that filters the data and passesiit to the next label, can be implemented as follows:

ny $labl = $unit->makelLabel ($rt1, "labl", undef, sub {
ny ($label, $rowop) = @;
if ($rowop->get Rowm)->get("a") > 10) {
$uni t - >cal | ($l ab2- >adopt ($r owop)) ;
}
1)

This code doesn't even look at the opcode in the rowop, it just passesiit through and lets the next l1abel worry about it. The
functionality of adopt () aso can beimplemented with

$rowop2 = $l abel - >makeRowop($r owopl- >get Opcode(), $rowopl->get Row());

But adopt () iseasier to cal and also more efficient, because less of the intermediate data surfaces from the C++ level
to the Perl level.

Row operations 37

The references to rowops can be compared as usual:

$r owopl- >sane($r owop2)

returns true if both point to the same rowop object.

The rowop data can be extracted back:

$l abel = $rowop- >get Label ();

$opcode = $rowop- >get Opcode() ;

$row = $r owop- >get Row() ;

A Rowop can be printed (usually for debugging purposes) with

$string
$string

$rowop->print P();
$r owop- >pri nt P($nane) ;

Just as with a row, the method pri nt P() isimplemented in Perl. In the future apri nt () done right in C++ may be
added, but for now | try to keep all the interpretation of the data on the Perl side. Even though pr i nt P() isimplemented
in Perl, it can print the rowops for any kinds of labels. The following example gives an idea of the format in which the
rowops get printed:

$l b = $unit->makeDunmyLabel ($rt, "Ib");

$rowop = $I b- >nmakeRowop(&Tri ceps: : OP_| NSERT, $row);

print $rowop->printP(), "\n";

would produce

I'b OP_I NSERT a="123" b="456" c="3000000000000000" d="3.14" e="text"

The row contentsis printed through Row: : pri nt P(), so it has the same format.

The optional argument allows to override the name of the label printed. For example, if in the example above the last line
were to be replaced with

print $rowop->printP("Q herLabel"), "\n";
the result will become:

O her Label OP_I NSERT a="123" b="456" c="3000000000000000" d="3.14" e="text"

It makes the printing of rowops in the chained labels more convenient. A chained label's execution handler receives the
original unchanged rowop that refersto thefirst Iabel in the chain. So when it gets printed, it will print the name of thefirst
label in the chain, which might be very surprising. The explicit argument allows to override it to the name of the chained
label (or to any other value).

6.5. Opcodes

The defined opcodes are:

e &Triceps:: OP_NOPor" OP_NOP"

e &Tri ceps:: OP_I NSERT or " OP_I NSERT"
* &Triceps:: OP_DELETEor" OP_DELETE"

The meaning is straightforward: NOP does nothing, INSERT inserts arow, DELETE deletes arow. There is no opcode to
replace or update a row. The updates are done as two separate operations: first DELETE the old value then INSERT the
new value. The order isimportant: the old value has to be del eted before inserting the new one. But there is no requirement
that these operations must go one after another. If you want to update ten rows, you can first delete al ten and then insert

38 Labels and Row Operations

the new ten. In the normal processing the end result will be the same, even though it might go through some different
intermediate states. It's a good idea to write your models to follow the same principle.

Internally an opcode is always represented as an integer constant. The same constant value can be obtained by calling
the functions &Tr i ceps: : OP_*. However when constructing the rowops, you can aso use the string literals " OP_*"
with the same result, they will be automatically transtaled to the integers. In fact, the string literal form is dightly faster
(unless you save the result of the function in a variable and then use the integer value from that variable for the repeated
construction).

But when you get the opcodes back from rowops, they are aways returned as integers. Triceps provides functions that
convert the opcodes between the integer and string constants:

$opcode = &Triceps::stringQpcode($opcodeNane);
$opcodeNane = &Triceps::opcodeString($opcode);

They come handy for al kinds of print-outs. If you passtheinvalid values, the conversion to integerswill returnanundef .

The conversion of the invalid integers to strings is more interesting. And by the way, you can pass the invalid integer
opcodes to the rowop construction too, and they won't be caught. The way they will be processed is a bit of alottery. The
proper integer values are actually bitmasks, and they are nicely formatted to make sense. The invalid values would make
some random bitmasks, and they will get processed in some unpredictable way. When converting an invalid integer to
astring, opcodeSt ri ng tries to predict and show thisway in a set of letters | and D in sguare brackets, for INSERT
and DELETE flags. If both are present, usually the INSERT flag wins over the DELETE in the processing. If none are
present, it's a NOP.

In the normal processing you don't normally read the opcode and then compare it with different values. Instead you check
the meaning of the opcode (that isinternally a bitmask) directly with the rowop methods:

$r owop- >i sNop()
$r owop- >i sl nsert ()
$r owop- >i sDel et e()

Thetypical idiom for the label's handler functioniis:

if ($rowop->isinsert()) {
handle the insert logic ...
} elsif($rowop->isDelete()) {
handl e the delete logic...

}

The NOPs get silently ignored in thisidiom, as they should be. Generally there is no point in creating the rowops with the
OP_NOP opcode, unless you want to use them for some weird logic.

The main Triceps package also provides functions to check the integer opcode values directly:
Triceps::isNop($opcode)

Triceps::islnsert($opcode)

Triceps::isDel et e($opcode)

The same-named methods of Rowop are just the more convenient and efficient way to say
Triceps::isNop($rowop->get OQpcode())

Triceps::islnsert($rowp->get Opcode())

Triceps: :isDel et e($r onwop- >get Opcode())

They handle the whole logic directly in C++ without an extra Perl conversion of the values.

Opcodes 39

40

Chapter 7. Scheduling

7.1. Introduction to the scheduling

The scheduling determines, in which order the row operations are processed. If there are multiple operations available,
which one should be processed first? The schedul er keeps a queue of the operations and selects, which one to execute next.
This hasamajor effect on the logic of a CEP model.

The Tricepsapproach to scheduling varied over time. Initially it looked like the purely procedural execution will be enough,
with the order determined by the order of the procedural execution, and no explicit scheduling would be needed. This has
proved to haveits own limitations, and thus the labels and their scheduling were born. Then it had turned out that the most
typical thing to do with alabel isto call it, again in the purely procedural order.

So for the most part you don't need to think about scheduling in Triceps. It just works as expected: when you call alabel
with arowop, the call returns after the label's work is all done. You can pretty much skip over the section with the low-
level details atogether, just read the high-level sections. The only important exception is the topological loops, where the
rowops go repeatedly through a closed loop of the labels. But even for them the Perl API provides the high-level methods
that take care of the details under the hood. And thereis another way to deal with the loops by using the streaming functions
and procedural loops.

If you want to understand the loop scheduling better, skim over the sections with the details. Y ou'd also need to do this if
you plan to write the Triceps modelsin C++, since as of version 2.0 the C++ API does not provide the high-level methods
for building the loops yet.

Only if you are a serious CEP affictionado and want to understand how everything really works, you need to seriously
read al the details.

7.2. Comparative scheduling in the various CEP
systems

There are multiple approaches to scheduling employed by different CEP systems. The classic Aleri CEP essentially didn't
have any, except for the flow control between threads, because each its element is a separate thread. Coral8 had an intricate
scheduling algorithm. Sybase R5.1 has the same logic as Coral8 inside each thread. StreamBase presumably also has some.

The scheduling logic in Triceps is different from the other CEP systems. The Coral8 logic looks at first like the only
reasonable way to go, but could not be used in Tricepsfor threereasons: First, it'satrade secret, soit can't be simply reused.
If I'd never seen it, that would not be an issue but I've worked on it and implemented its version for R5.1. Second, it relies
on the properties that the compiler computes from the model graph analysis. Triceps has no compiler, and could not do
this. Third, in redlity it simply doesn't work that well. There are quite a few cases when the Coral8 scheduler comes up
with a strange and troublesome execution order.

7.3. Execution unit basics

An execution unit (often called simply “unit”) keeps the state of the Triceps execution for one thread. Each thread running
Triceps must have its own execution unit.

It's perfectly possible to have multiple execution units in the same thread. This is typically done when there is some
permanent model plus some small intermittent sub-models created on demand to handle the user requests. These small sub-
models would be created in the separate units, to be destroyed when their work is done. But this is a somewhat advanced
usage, more examples will be shown in Section 15.11: “Streaming functions and unit boundaries’ (p. 283) The TQL
implementation also does this, as described in Chapter 17: “TQL, Triceps Trivial Query Language” (p. 335) .

41

This section describes the basic methods of the units, the most often used ones. The more advanced ones are described in
the following sections, and the full reference islocated in Section 19.3: “Unit and FrameMark reference” (p. 364) .

A unit is created with:
$myUnit = Triceps:: Unit->new"name");

The name argument will be used in the error messages, making easier to find, which exact part of the mode is having
troubles. By convention the name should be the same as the name of the unit variable (“myUnit” in this case).

The name can be read back:
$nanme = $nyUnit - >get Nane() ;

Also, asusual, thevariable Sy Uni t herecontainsareferenceto the actual unit object, and two references can be compared
for whether they refer to the same object:

$result = $unitl->same($unit?2);

A unit also keeps an empty row type (one with no fields), primarily for the creation of the clearing labels (discussed in
Section 8.2: “Clearing of the labels’ (p. 78)and Section 6.2: “Label construction” (p. 34)), but you can use it for any
other purposes too. Y ou can get it with the method:

$rt = $uni t - >get Enpt yRowType();

Each unit has its own instance of an empty row type. Its purely for the conveniece of memory management, they are all
equivalent.

The labels are called with:
$uni t->cal | ($rowop, ...);

Theidentity of the label being called isembedded in the row operation. The*“...” showsthat multiple rowops may be passed
as arguments. So the real signature of this method is:

$uni t->cal | (@ owops);
But thisway it looks more confusing. A call with multiple arguments produces the same result as doing multiple calls with
one argument at atime. Not only rowops but also trays (to be discussed later) of rowops can be used as arguments.

There also are the convenience methods that create the rowops from the field values and immediately call them:

$uni t - >makeHashCal | ($l abel , $opcode,
$fi el dName => $fieldvalue, ...);
$uni t - >makeArrayCal | ($l abel , $opcode, @i el dval ues);

The methods for creation of labels have been already discussed in Section 6.2: “Label construction” (p. 34) . Hereistheir
recap along with the similar methods for creation of tables and trays that will be discussed later:

$l abel = $unit->makeDumyLabel ($rowType, “nane");

$l abel = $unit->nmakelLabel ($rowType, "nane",
$cl ear Sub, $execSub, @rgs);

$l abel = $unit->maked eari nglLabel ("nanme", @rgs);
$tabl e = $unit->nmakeTabl e($t abl eType, "nane");

$tray = $unit->nmakeTray(@ owops);

A special thing about the labels is that when a unit creates alabel, it keeps areference to it, for clearing. A label keeps a
pointer back to the unit but not areference (if you call get Uni t () on alabel, the returned value becomes a reference).

42 Scheduling

For atable or atray, the unit doesn't keep a reference to them. Instead, they keep a reference to the unit. The references
are at the C++ level, not Perl level.

With the tables, the references can get pretty involved: A table haslabels associated with it. When atableis created, it also
createstheselabels. Theunit keepsreferencesof theselabels. Thetableal so keepsreferences of theselabels. Thetablekeeps
areference of the unit. The labels have pointers to the unit and the table but not references, to avoid the reference cycles.

See more on the memory management and label clearing in the Chapter 8: “Memory Management” (p. 77) .

7.4. Trays

The easiest way to store a sequence of rowops is to put them into the Perl arrays, like:

my @ps = ($rowopl, $rowop2);
push @ps, $rowop3;

However the C++ internals of Triceps do not know about the Perl arrays. And some of them can work directly with the
seguences of rowops. So Triceps defines an internal sort-of-equivalent of Perl array for rowops, called a Tray.

The trays have first been used to “catch” the side effects of operations on the stateful elements, so the name “tray” came
from the metaphor “put atray under it to catch the drippings’. The new and better approach for catching the resultsin a
tray catches the results of streaming functions.

The trays get created as:
$tray = $unit->nmakeTray(@ owops);

A tray always stores rowops for only one unit. It can be only used in one thread. A tray can be used in al the calling/en-
gueueing methods, just like the direct rowops (the detail s of the enqueueing methodswill be described later in Section 7.11:
“The gritty details of Triceps scheduling” (p. 69) and in Section 19.3: “Unit and FrameMark reference” (p. 364)).

$unit->call ($tray);
$unit->fork($tray);

$uni t - >schedul e($tray);

$uni t - >enqueue($node, S$tray);
$uni t - >l oopAt ($mark, $tray);

Moreover, multiple trays may be passed, and the loose rowops and trays can be mixed in the arguments of these functions,
for example:

$uni t->cal | ($rowopSt art Pkg, $tray, $rowopEndPkg);
A tray may contain the rowops of any types mixed in any order. Thisis by design, and it's an important feature that allows

to build the protocol blocks out of rowops and perform an orderly data exchange. This feature is an absolute necessity for
proper inter-process and inter-thread communication.

The ability to send the rows of multiple types through the same channel in order isamust, and its lack makes the commu-
nication with some other CEP systems exceedingly difficult. Coral8 supports only one stream per connection. Aleri (and |
believe Sybase R5) allows to send multiple streams through the same connection but has no guarantees of order between
them. | don't know about the others, check yourself.

To iterate on atray in the Perl code, it can be converted to a Perl array:
@rray = $tray->toArray();
Thesize of thetray (the count of rowopsinit) can be found directly without a conversion, and the unit can be read back too:

$size = $tray->size();
$traysUnit = $tray->getUnit();

Another way to create atray is by copying an existing one:

Trays 43

$tray2 = $trayl->copy();

This copiesthe contents (which isthe referencesto the rowops) and does not create any ties between the trays. The copying
isredly just amore efficient way to do an equivalent of:

$tray2 = $trayl->get Unit()->makeTray($trayl->toArray());
The tray references can be compared for whether they point to the same tray object:
$result = $trayl->same(S$tray?2);

The contents of atray may be cleared. Which is more convenient and more efficient than discarding a tray and creating
another one:

$tray->clear();
The data may be added to the back of atray:
$t ray- >push(@ owops) ;

Multiple rowops can be pushed in asingle call. There are no other Perl-like operations on atray: it's either create from a
set of rowops, push, or convert to a Perl array.

Note that the trays are mutable, unlike the rows and rowops. Multiple references to a tray will see the same contents. If a
tray is changed through one reference, the others will see the changes too.

7.5. Error handling during the execution

The basics of error handling have been described in Section 4.2: “Errors, deaths and confessions” (p. 19) . Now let's look
more in-depth. When the label s execute, they may produce errorsin one of two ways:

» The Perl code in the label might die.
» The call topology might violate the rules.

The rules are basically that by default you can't make the recursive cals. A label may not make calls directly or through
other labelsto itself. Theideais to catch the call sequences that are likely to go into the deep recursion and overflow the
stack. It catches them early, on thefirst attempt of recursion. If you need to do the recursion, the best way isto use instead
schedul e() orl oopAt () or the streaming functions with trays. That way you avoid overrunning the stack.

It's also possible to relax the recursion checks by specifying higher limits for the recursion count and stack depth. How to
do it is described in Section 7.13: “Recursion control” (p. 74). It comes useful in some specia cases, as described in
Section 15.9: “Streaming functions and recursion” (p. 269). However such higher limits best be avoided unless really
needed.

What particular stack is meant here? The execution of Tricepsin Perl has three stacks:

e The system stack used by the underlying Triceps C++ code and by the internal functions of the Perl interpreter.
» The Perl call stack, keeping the call history of the Perl code.

e The Triceps call stack, keeping the call history of the Triceps labelsin a Unit.

The answer is “al three of these stacks’. As the calls are made, frames are pushed onto all these stacks, logically inter-
mingling.

Whichever way the error is detected, it causes the stacks to be unwound, undoing the intermingling in the opposite order.
The Perl error messages from di e or conf ess and the Triceps tracing (in the C++ code) of the rowop calls and label
chainings get combined into a common stack trace as the stacks are being unwound. When the code gets back to Perl, the
XScodetriggersaconf ess with the message containing the unwound stack trace up to this point. If that happensto bein
the handler of another label, it continues the hybrid stack unwinding. If not caught by eval , it keeps going to the topmost
TricepsUnitcal | () ordrai nFrane() and causesthewholeprogramto die, printing the stack trace. In amultithreaded

44 Scheduling

Triceps model thereisalso astep of interrupting all the threadsin the model, but inthe end it till ends up dying and printing
the stack trace along with the information, what thread caused it. Which is a reasonabl e reaction most of the time.

Remember, the root cause is a serious error that is likely to leave the model in an inconsistent state, and it should usually
be considered fatal.

If you want to catch the errors, nip them in the bud by wrapping your Perl codein eval . Then you can handle the errors
before they have a chance to propagate.

In case if the program runs multiple models (multiple Units, or multiple multithreaded Apps) in it, it can also wrap the
outermost call ineval , and discard just this one erroneous model whileleaving the other models running. If the erroneous
units get properly cleared, they will free their memory and cause no leaks.

What happensto the rowopsthat were enqueued in the Triceps stack frames when the stack gets unwound? They get thrown
away. The memory gets collected thanks to the reference counting, but the rowops and their sequence order get thrown out
of the stack. The reason is basically that there may be no catching of the errors until unwinding to the outermost call. The
choiceisto either throw away everything after thefirst error or keep trying to execute the following rowops, collecting the
errors. And that might become a lot of errors. I've taken the choice of stopping as early as possible, because the state of
the model will probably be corrupted anyway and nothing but garbage would be coming out (if anything would be coming
at al and not be stuck in an endless loop).

7.6. No bundling

The most important principle of Triceps scheduling is: No Bundling. Every rowop isfor itself.

I've seen the most damage done by bundling in the Coral8/Sybase R4 scheduling, so I'll refer to it when explaining the
dangers of bundling.

What is a bundle? It's a set of records that go through the execution together. If you have a model consisting of two
functional elements F1 and F2 connected in a sequential fashion

F1->F2
and afew loose records R1, R2, R3, the normal execution order without bundling will be:
F1(Rl), F2(R1), F1(R2), F2(R2), F1(R3), F2(R3)

Each row goes through the whole model (areal simple onein this case) before the next one is touched. This allows F2 to
takeinto accont the state of F1 exactly asit wasright after processing the samerecord, without any interventionsin between.

Even though the trays in Triceps store multiple rowops, they are not bundles. When atray is called, it works exactly as if
every rowop from it were called separately in order. Thefirst rowop fully propagates, then the second one, and so on. The
ordered storage in the trays only provides the order for that future execution or for amanual iteration over the rowops.

If the same records are placed in abundle (R1, R2, R3), the execution order will be different:
F1(Rl), F1(R2), F1(R3), F2(Rl), F2(R2), F2(R3)
The whole bundle goes through F1 before the rows go to F2.

That would not always be a problem, and even could be occasionally useful, if the bundles were always created explicitly.
In the reality of Coral8/Sybase R4 scheduling, every time a statement produces multiple rows from a single one (think
of ajoin that picks multiple rows from another side), it creates a bundle and messes up all the logic after it. Some logic
gets affected so badly that a few statementsin CCL (the Sybase modeling language), such as “ON UPDATE”, had to be
designated to always ignore the bundles, otherwise they would not work at all. At my past work | wrote a CCL pattern
for breaking up the bundles. It's rather heavyweight and thus could not be used all over the place but provides a generic
solution for the most unpleasant cases.

Worse yet, the bundles may get created in Coral 8 absolutely accidentally: if two rows happen to have the same timestamp,
for al practical purposes they would act as a bundle. In the models that were designed without the appropriate guards,

No bundling 45

this leads to the time-based bugs that are hard to catch and debug. Writing these guards correctly is hard, and testing them
is even harder.

Another issue with bundlesis that they make the large queries slower. Suppose you do a query from awindow that returns
amillion rows. All of them will be collected in a bundle, then the bundle will be sent to the interface gateway that would
build one huge protocol packet, which will then be sent to the client, which will receive the whole packet and then finally
iterate on the rows in it. Assuming that nothing runs out of memory along the way, it will be a long time until the client
seesthefirst row. Very, very annoying.

The Aleri CEP also had its own version of bundles, called transactions, but a more smart one. Aleri always relied on the
primary keys. The condition for atransaction isthat it must never contain multiple modification for the same primary key.
Since there are no execution order guarantees between the functional elements, in this respect the transactions work in the
same way as loose records, only with a more efficient communication between threads. Still, if the primary key changes
in an element (say, an aggregator), the condition does not propagate through it. Such elements have to internally collapse
the outgoing transactions along the new key, adding overhead.

7.7. Topological loops

The easiest and most efficient way to schedule the loopsisto do it procedurally, something like this:

foreach ny $row (@ owset) {
$uni t - >cal | ($l bA- >makeRowop(&Tri ceps: : OP_I NSERT, $row));
}

However it requires that al the rowops to loop over are known in advance. In some situations this might not be true, but
instead the rowop entering a loop iteration gets produced by the previous iteration. These situations are better served by
the topological loops, formed by connecting the labelsin aloop as shown in Figure 7.1 .

Figure 7.1. Labelsforming a topological loop.

However if the labels are simplemindedly doing the calls through atopology like this, the loop becomes a recursion: each
label ends up indirectly calling itself for the next iteration of the loop, which repeats the same thing again ang again. This
arrangement would quickly use up the stack and crash, so Triceps normally prohibits the recursive calls.

There are two ways to get around that problem. The first one is to use the trays and streaming functions as described in
Section 15.5: “Streaming functions and loops’ (p. 259). It might be the more powerful alternative of the two, however
the concept of streaming functions takes afair amount of explaining and thusis placed later in the manual. The second way
is to use the more advanced scheduling capabilities of the Triceps units, which is described here.

The detailed explanation of how it all works is somewhat complicated, split into a separate section Section 7.12: “The
gritty details of Triceps loop scheduling” (p. 72) for those interested. But there are the easy methods that cover up
all the complexity.

46 Scheduling

The first part is done by creating the first label of the loop (such as the label A in Figure 7.1) through a specia wrapper.
This can be done in one of two ways:

ny ($lbFirst, $mark) = $unit->makeLoopHead($rowType, "nane", $cl ear Sub,
$execSub, @rgs);
ny ($l bFirst, $mark) = $unit->nakeLoopAround("nane", $lbToWap);

makelLoopHead() istheway to useif you're creating anew Perl |abel to bethefirst oneintheloop. It hasthe exact same
arguments asmakelLabel (), whichis described in Section 6.2; “Label construction” (p. 34) . It will put an appropriate
wrapper directly into the Perl code, that would do all the required magic before your code executes.

makelLoopAr ound() istheway to useif you want to start the loop with some existing label (such as an input label of a
table). It will createanew label that doesthe necessary magic, then chainitsargument label from the new one. Nothing really
stops you from creating a Perl label manually and then wrapping it in makeLoopAr ound() but makeLoopHead()
produces a slightly more efficient code.

Either way, two values are returned: the newly created label and a special FrameMark object.

When you send the rows into the loop, you absolutely must send them to this newly created label, not directly to the
underlying wrapped label! Otherwise the magic won't work.

The FrameMark isaspecial opaque object that is used to remember the state of the Triceps call stack at the start of the loop,
to get back to it on the next iterations. It will be used when sending the rowops to the next iteration of the loop. Naturally,
this object must be made accessible in the label handlers that do this sending.

The name argument will become the name of the created label. The FrameMark object also has a name, useful for diag-
nostics, that gets created by adding a suffix to the argument: “name.mark”.

The second part, whenever you need to send a rowop back to the start of the loop, such asin the label C in Figure 7.1,
don't call it but use a special method:

$uni t - >l oopAt ($mark, @ owops_or _trays);

This will remember this rowop for the future. When the processing of the current iteration is al done, the scheduler in
the unit will pick up the next remembered looped rowop and will feed it into the next iteration, until there are no more
remembered rowops. Only after that will the first call of the first label in the loop return to its caller. In Figure 7.1 the
said caller will bethe label X.

The rowops sent back must always be for the label $I bFi r st , returned by the makeLoop* () .

It's perfectly fine to send multiple rowops back from a single iteration of the loop, each of these rowops will be processed
inits own iteration in the order they were sent.

It's also perfectly fine to have the nested loops, as long as each loop uses its own frame mark object and starts from a
separate label (add an empty label if needed).

There also are the convenience methods that create a rowop and loop it back in one go, just like nakeHash-
Call ()/ makeArrayCall ():

$uni t - >makeHashLoopAt ($mar k, $I bFirst, $opcode,
$fiel dNanme => $fieldvalue, ...);
$uni t - >makeArrayLoopAt ($nmark, $I bFirst, $opcode, @i el dval ues);

Now with all this knowledge let's write an example. It will compute the Fibonacci numbers. It's a real overcomplicated
and perverse way of calculating the Fibonacci numbers. But it also is a great fit to the type of problems that get solved
with the topological loop, one of asimple kind.

First, aquick reminder of what is a Fibonacci number. Historically it's a solution to the problem of breeding the spherical
rabbits in a vacuum. But in the mathematical reality it's the sequence of humbers where each number is a sum of the two
previous ones. Two initial elements are defined to be equal to 1, and it goes from there:

Fi=F.a+Fo

Topological loops a7

F]_:l; F2:1

The Fibonacci numbers are often used as an example of recursive computations in the beginner's books on programming.
The computation of the n-th Fibonacci number is usually shown like this:

sub fibl # ($n)

{
nmy $n = shift;
if ($n <= 2) {
return 1;
} else {
return & ibl($n-1) + & i bl($n-2);
}
}

However that's not a good way to compute in the real world. When afunction callsitself recursively once, its complexity

islinear, O(n). When a function calls itself twice or more, its complexity becomes exponential, O(e"). At first you might
think that it's only quadratic O(nz) because it forks two ways on each step. But these two ways keep forking and forking
on each step, and it compounds to exponential. Which isarea bad thing.

To think of it, it's a huge waste, since the (n-2)-th number is calculated anyway for the (n-1)-th number. Why calculate
it separately the second time? We could as well have saved and reused it. The Lisp people have figured this out a long
time ago, and the Lisp books (if you can read Finnish or Russian, [Hyvonen86] is aclassical one) are full of examples that
do exactly that. However I'm too lazy to explain how they work, so we're going to skip it together with the conversion
of atail recursion into aloop and get directly to the loop version. | find the loop version more natural and easier to write
than arecursion anyway.

sub fibStep2 # ($prev, $preprev)

return ($.[0] + $ [1], $.[0]);

}
sub fib2 # ($n)
{

nmy $n = shift;

nmy @rev = (1, 0); # n and n-1

while ($n > 1) {
@rev = & i bStep2(@rev);
$n--;

}

return $prev[0];

}

The split into two functions is not mandatory for the loop version, it just does the clean separation of the loop counter logic
and of the computation of the next step of the function. (But for the recursion version if would be mandatory).

I'm going to take this procedural loop version and transform it into a topological loop. It actually happens to be a real
good match for the topological loop. In atopological loop arecord keeps traveling through it and being transformed until
it satisfies the loop exit condition. Here @r ev is the record contents, and the iteration count will be added to them to
keep track of the exit condition.

$uFib = Triceps::Unit->new("uFib");

ny $rtFib = Triceps:: RowType->new
iter => "int32", # iteration nunber
cur => "int64", # current nunber
prev => "int64", # previous nunber

)

ny $l bPrint = $uFi b->nakelLabel ($rtFi b, "Print", undef, sub {

48 Scheduling

print($_[1]->get Row()->get("cur"));
1)

ny $l bConpute; # will fill in later

ny ($l bNext, $markFib) = $uFi b->nmakelLoopHead(
$rtFib, "Fib", undef, sub {
nmy $iter = $ [1]->get Row()->get("iter");
if ($iter <= 1) {
$uFi b->cal | ($! bPrint->adopt ($_[1]));
} else {
$uFi b->cal | ($l bConput e- >adopt ($_[1]));
}

}
)

$l bConput e = $uFi b->makelLabel ($rtFi b, "Conpute", undef, sub {
ny $row = $_[1]->get Row();
ny $cur $row >get ("cur");
$uFi b- >makeHashLoopAt ($mar kFi b, $I bNext, $_[1]->get Opcode(),
iter => $row>get("iter") - 1,
cur => $cur + $row >get ("prev"),
prev => $cur,
)
1)

ny $l bMai n = $uFi b- >makelLabel ($rtFi b, "Miin", undef, sub {
ny $row = $_[1]->get Row();
$uFi b- >makeHashCal | ($l bNext, $_[1]->get Opcode(),

iter => $row >get("iter"),

cur => 1,

prev => 0,

)

print(" is Fibonacci nunber ", $row>get("iter"), "\n");

1)

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/);
$uFi b- >makeAr rayCal | ($l bMai n, @lat a) ;
$uFi b->drai nFrane(); # just in case, for conpleteness

}

You can see that it has grown quite a bit. That's why the procedural loops are generally a better idea. However if the
computation involves alot of the SQLY logic, the topological loops are still beneficial.

The main loop reads the CSV lines with opcodes (which aren't really used here, just passed through and then thrown away
before printing) and calls $| bMai n. Here is an example of an input and output as they would intermix if the input was
typed from the keyboard. Asin the rest of this manual, the input lines are shown in bold.

OP_| NSERT, 1
1 is a Fibonacci nunber 1
OP_DELETE, 2
1 is a Fibonacci nunber 2
OP_| NSERT, 5
5 is a Fibonacci nunber 5
OP_I NSERT, 6
8 is a Fibonacci nunber 6

Theinput lines contain the values only for thefieldi t er , which intentionally happensto be thefirst field in the row type.
The other fields will be reset anyway in $| bMai n, so they are left asNULL.

Topological loops 49

Thepoint of $| bMai n isto call theloop beginlabel $I bBegi n and then print the message about which Fibonacci number
was requested. The value of the computed number is printed at the end of the loop, so when the words “is a Fibonacci
number” are printed after it, that demonstrates that the execution of $| bMai n continues only after the loop is completed.

Just to rub it in a bit more, $| bMai n itself doesn't get back the result of the computation, because the Tricepscal | ()
has no way to return any results. The intermediate states circle through the loop until the computation is completed, and
the results are forwarded out of the loop to $I bPri nt () . All thistime $| bMai n sits and waits for its call to complete.
After the execution gets back to $I bMai n, it knows that $| bPri nt () aready ran and printed the result, so it prints
more detail after it. Another option would be for the loop result label to put the result value into some static variable, letting
$l bMai n read it and print the whole message in one statement.

Theloop logic is split into two labels $1 bNext and $| bConput e purely to show that it can be split like this. $| bNext
handles the loop termination condition, and $| bConput e does essentially the work of f i bSt ep2() . After the loop
terminates, it passes the result row to $1 bPr i nt for the priniting of the value.

When the code for $I bNext is created, it contains the call of $| bConput e. However the label $I bConput e has not
been created at thistime yet! Not a problem, creating in advance an empty variable $| bConrput e is enough. The closure
in $1 bNext will keep areference to that variable, and the variable will be filled with the reference to the label later (but
before the main loop executes).

And hereisthe version with makeLoopAr ound() :

ny ($l bNext, $markFib); # will fill in later

$! bComput e = $uFi b- >makelLabel ($rtFi b, "Conpute", undef, sub {
nmy $row = $_[1]->get Row();
nmy $cur = $row >get ("cur");
ny $iter = $row>get("iter");
if (Siter <= 1) {
$uFi b->cal | ($l bPrint->adopt ($_[1]));
} else {
$uFi b- >makeHashLoopAt ($mar kFi b, $I bNext, $_[1]->get Opcode(),
iter => $row>get("iter") - 1,
cur => $cur + $row >get("prev"),
prev => S$cur,
)
}
1)

(8l bNext, $markFi b) = $uFi b- >makelLoopAr ound(
"Fib", $IbConpute
)

Theunit, row type, $1 bPri nt , $I bMai n and the main loop have stayed the same, so they are omitted from this example.
The whole loop logic, both the termination condition and the computation step, have been collected into one label $I b-
Conput e, to show that it can be done this way too. Then the loop head is created around $1 bConput e.

Sinceboth $1 bNext and $rmar kFi b need to beaccessibleinside $lI bConput e, they are created in advance and become
visible in the closure scope. But the values are placed into these variables only after $| bConput e is already defined
(since $I bConput e isan argument to build these values).

For the more curious, let's dig alittle into what happensinside the makeLoop* () methods. The same effect can be (and
in C++ APl hasto be) achieved by calling the slightly lower-level methods.

The frame mark is created as follows:
ny $mark = Triceps:: FraneMar k- >new(" mar kNane") ;
It has to be remembered and then used in the first 1abel of the loop to remember the state of the Triceps call stack:

$uni t - >set Mar k($mar k) ;

50 Scheduling

Thisis normally the first thing done in the first 1abel's handler. Yes, it will be remembered on every iteration of the loop.
However the trick of the arrangement is that the call stack will be returned to the same state before each iteration, so on
the second and following iterations this call will become a no-op.

ThemakeLoop* () methodsjust do thisfor you, their implementation isfairly smple:

sub nakeLoopHead # ($self, $rt, $name, $cl ear Sub, $execSub, @rgs)
{

my ($self, $rt, $name, $clear, $exec, @rgs) = @;
ny $mark = Triceps:: FraneMar k- >new $nane . ".mark");

ny $l abel = $sel f->nakelLabel ($rt, $nane, $clear, sub {
$sel f->set Mar k($mar k) ;

&$exec(@) ;
}, @rgs);
return ($l abel, $mark);
}
sub nmekeLoopAround # ($sel f, $nane, $I bFirst)
{

my ($self, $nane, $IbFirst) = @;
my $rt = $I bFi rst->get RowType();

ny $mark = Triceps:: FraneMar k- >new $nane . ".mark");

ny $l bWap = $sel f - >makeLabel ($rt, $name, undef, sub {
$sel f->set Mar k($mar k) ;

1)
$l bW ap- >chai n($l bFi rst);

return ($l bWap, $nmark);

7.8. The main loop

The examples above had already shown the “main loop”, now let'slook at it up close and discuss, what and why isit doing.
The point of the main loop is to get the execution of the model going: accept some rowops from the outside world, shovel
them into the Triceps model and process them, sending some result rowops back into the outside world. The sending back
is done from inside the label handlers, so aslong as the model runs, nothing else is needed for them.

By the time the program enters the main loop, the model should be all constructed and ready to run. The simplest main
loop may look like this:

while ($rowop = & eadRowop()) { # reads with some user-defined function
$uni t - >cal | ($r owop) ;
}

Thisloop will read the incoming rowops as long as they're available, and call them. When $uni t - >cal | () returns, the
processing of the rowop in the model is done, including all the nested calls it caused.

However there is also a way to request the post-processing. It's somewhat similar to the Tcl concept of “idletasks’. An
example of post-processing might be the flushing of the output buffer: the normal processing may collect a number of the
output rowopsin the buffer, and after everything is done, the buffer would be serialized and sent out. This post-processing
needs to happen after theinitial call returns.

The rowops are scheduled for post-processing with the method:

The main loop 51

$uni t - >schedul e(@ owops_or _trays);

The model keeps a queue of the post-processing requests, and schedul e() addsto this queue.

However the simplest main loop shown above won't run the postprocessing. The queue would just keep growing. The
postprocessing is done by the method

$uni t - >dr ai nFrane() ;

It callsall the collected post-processing rowopsin order. Their handling may keep scheduling morerowops, and thedraining
won't stop until all of them are processed. So they should not keep schduling more rowops forever, or the draining will
never end. To handle the postprocessing properly, the main loop should be:

while ($rowop = & eadRowop()) { # reads with some user-defined function
$uni t - >cal | ($r owop) ;
$uni t - >dr ai nFrame() ;

}
You can even writeitin aslightly different form:;

while ($rowop = & eadRowop()) { # reads with some user-defined function
$uni t - >schedul e($r owop) ;
$uni t - >dr ai nFrame() ;

}

In this version the incoming rowop gets added to the queue, and then dr ai nFr ane() calsit and any of its after-effects.
Historically, this has been the intended way but then it had turned out that there is no point in first placing the incoming
rowop onto the queue and then reading it from the queue, so calling it directly is slightly more efficient.

What if you decide in some label handler deep in the call tree that now isthe good time to run the schduled rowops, similar
to Tcl's“update idietasks’ and call dr ai nFr ane() ?First of all, thisisavery bad idea. The CEP models are usually very
sensitive to the particular execution order, and inserting some random rowops in the middle tends to break things. Second,
it won't work. It might execute some rowops (which ones exactly is along story, described in Section 7.11: “The gritty
details of Triceps scheduling” (p. 69)) but none of the scheduled ones. In short, there is a reason to why the method is

caled dr ai nFrame() : the queue is organized in frames that are pushed stack-wise as the labels are called, and popped
after the calls complete. Dr ai nFranme() drains the current frame. Schedul e() puts the rowops onto the outermost
frame that becomes accessible for draining only when the model isidle.

It is possible to find out whether there are the post-processing rowops scheduled and to run them one by one;

while ($rowop = & eadRowop()) { # reads with some user-defined function
$uni t->cal | ($r owop) ;
while (!S$unit->enmpty()) {
$uni t->cal | Next();
}
}

But of course a Perl loop is less efficient than the C++ loop in dr ai nFr ame() .

Another straightforward idea is to read and execute the input as it comes in but delay the post-processing until the input
becomesidle, exacly like the Tcl “idletasks’ do. Somewhat like this:

while (1) {
if (!$Sunit->empty()) {
$rowop = & eadRowopNoWai t () ;
if ($rowop) {
$uni t - >cal | ($r owop) ;
} else {
$uni t->cal | Next();

} else {

52 Scheduling

$rowop = & eadRowop();
last if (!$rowop); # no nore input
$uni t - >cal | ($r owop) ;
}
}

It might even be useful sometimes but most of the time this turns out to be nothing but pain. The problem is that the
exact order of execution becomes dependent on the timing of the data arrival, and the repeatabl e testing becomes next to
impossible. It's another case of the bundling problem.

If the data arrives bundled with multiple rowops per packet, you have a choice whether to drain the frame after each rowop
or after each packet. Which approach is better depends on the needs of the application and on whether the bundling of the
rowops into packets is predictable and repeatable. If there are no defined boundaries between packets but the grouping is
done simply by timeout or buffer size, such bundles are much better off being broken up into the individual rowops.

Now let's look at yet another aspect: the main loop may need to exit not only when there is no more input available but
also after processing some requests. This can be done by adding a globa stop flag, with label handlers setting it when
they need to request the exit:

$stop = O;

while (!$stop && ($rowop = & eadRowop())) {
$uni t->cal | ($rowop) ;
$uni t - >drai nFrame() ;

}

The examplesin this manual tend to read the input data as plain text lines, convert them to rowops and execute. They are
simple-minded, so they don't do any error checking, they would just fail randomly on the incorrect input. Their main loop
usually goes along the following lines (with variations, to fit the examples, and as the main loop was refined over time):

whi | e(<STDI N>) {

chonp;
nmy @ata = split(/,/); # starts with a cormand, then string opcode
ny $type = shift @lata;

if ($type eq "IbCur") {

$uni t - >makeArrayCal | ($l bCur, @lata);
} elsif ($type eq "I bPos") {

$uni t - >makeArrayCal | ($l bPos, @lata);

}

$uni t - >dr ai nFrane() ;

}

It reads the CSV (Comma-Separated Vaues) data from stdin, with the label name in the first column, the opcode in the
second, and the data fields in the rest. Then dispatches according to the label.

Many variations are possible. It can be generalized to look up the labels from the hash:

whi | e(<STDI N>) {
chonp;
nmy @ata = split(/,/); # starts with a cormand, then string opcode
ny $type = shift @lata;
$uni t - >makeArrayCal | ($l abel s{$type}, @lata);
$uni t - >dr ai nFrane() ;

}
Or call the procedural functions for some types:

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "IbCur") {

The main loop 53

$uni t - >makeArrayCal | ($l bCur, @lata);

} elsif ($type eq "I bPos") {
$uni t - >makeAr rayCal | ($l bPos, @lata);

} elsif ($type eq "clear") { # clear the previous day
&cl ear ByDat e($t Posi ti on, @lata);

}

$uni t - >dr ai nFrane() ;

}

Once again, none of these small examples are production-ready. They have no error handling, and their parsing of the CSV
data is primitive. It can't handle the quoting properly and can't parse the data with commasin it. A better ready way to
parse the data will be provided in the future. For now, make your own.

The multithreaded models have their own special needs for the main loops. These will be discussed in Section 16.6: “ Dy-
namic threads and fragments in a socket server” (p. 306) .

7.9. Main loop with a socket

A fairly typical situation is when a CEP model has to run in a daemon process, receiving and sending data through the
network sockets. Here goes an example that does this. It's not production-ready, it's only of an example quality, and thus
is located in an X-package. It still has the issue with the parsing of the CSV data, its handling of the errors is not well-
tested, and it makes afew simplifying assumptions about the buffering (more on this below). Other than that, it's a decent
starting point. You can import this package as Triceps::X::SimpleServer, its source code found in | i b/ Tri ceps/ X/
Si npl eServer. pm

package Triceps:: X :Sinpl eServer;
sub CLONE_SKIP { 1; }
our $VERSION = 'v2.0.0';

use Carp;

use Errno gw(El NTR EAGAI N) ;

use 1O :Poll gw(POLLIN POLLOUT POLLHUP);
use | O : Socket ;

use | O : Socket: : | NET;

our @SA = gw(Exporter);

our YEXPORT_TAGS = ("all' => [agw
out Buf out Cur Buf mai nLoop start Server nakeExitLabel nakeServer CQut Label

) 1)
our @EXPORT_OK = (@ S$EXPORT_TAGS{'all'} });

For whatever reason, Linux signals SIGPlIPE when witing on a closed
socket (and it's not a pipe). So intercept it.
sub interceptSi gPi pe

if (!'$SIGPIPE}) {
$SIG PIPE} = sub {};
}
}

and intercept SIGPlIPE by default on inport
& nt ercept Si gPi pe();

The package startswith the usual importsand exports. The CLONE_SKIPisrequired to make surethat the packageinteracts
properly with the multithreading (any objects of this package won't be cloned into the new threads, and since the cloning
tends to not work right anyway, I'm not sure why it's not the default).

54 Scheduling

Then it intercepts and ignores the SIGPIPE signal for the reasons described in the comment. It's very inconvenient to have
your server die on asignal when the other side decides to drop the connection. Any server dealing with sockets on Linux
must intercept SIGPIPE. Intercepting it with an empty handler looks like a better idea than ignoring it altogether, to make
extra-sure that the writer won't be stuck in that write forever, but perhapsignoring it would be just asgood. Theinterception
is placed into a function which gets called on the package import and can be called again later in case if something else
resets the handler to default.

the socket and buffering control for the main | oop;

they are all indexed by a unique id

our %lients; # client sockets

our % nbufs; # input buffers, collecting the whole Iines

our %utbufs; # output buffers

our $poll; # the poll object

our $cur_cli; # the id of the current client being processed

our $srv_exit; # exit when all the client connections are cl osed

Witing to the output buffers. WIIl also trigger the polling to
actually send the output data to the client's socket.
#
@aramid - the client id, as generated on the client connection
(if the client already disconnected, this call wll
have no effect)
@aramstring - the string to wite
sub outBuf # ($id, $string)
{
ny $id = shift;
ny $line = shift;
if (exists $clients{$id}) {
$out buf s{$i d} .= $line;
If there is anything to wite on a buffer, stop reading fromit.
$pol | - >mask($clients{$id} => POLLOUT);
}
}

Wite to the output buffer of the current client (as set in $cur_cl
by the main | oop).

#

@aramstring - the string to wite

sub out CurBuf # ($string)

{

}

out Buf ($cur _cli, @);

Close the client connection. This doesn't flush the ouput buffer,

so it nust be called only after the flush is done, or if the flush
can not be done (such as, if the client has dropped the connection).
1t does delete all the client-related data
#
#
#
s

@aramid - the client id, as generated on the client connection
@aram h - the socket handle of the client
ub _closeCient # ($id, $h)

ny $id = shift;

ny $h = shift;

$pol | - >mask($h, 0);

$h->cl ose() ;

delete $clients{$id}; # OK per Perl manual even when iterating
del ete $i nbuf s{$id};

del et e $out buf s{$i d};

Main loop with a socket 55

O HHHFHBFHFFHFHFHHFHFEHF R

The server
Accepts the connections fromit, th
input, reads the data in CSV and di

XXX Caveat s:

The way this works, if there is no
the last Iine won't be processed
Al so, the whole output for all the
before it can be sent.

@ar am srvsock - the server socket
@ar am | abel s -
mappi ngs used to dispatch th
nane => | abel _obj ect
nane => code_reference
The input fromthe clients
contai ning the | abel nane.
actual | abel
the data fields in the order
| ooked up dispatch is a Perl

Ref erence to the | abe

the rest of CSV fields are:

main | oop. Runs with the specified server socket.

en polls the connections for
spatches it using the | abels hash.

'\'n' before EOF,
input will be buffered
handl e

hash,
e input,

that contains the
in either of formats:

s parsed as CSV with the 1st field

Then if the | ooked up dispatch is an
the 2nd t he opcode,
of the label's row type. If the
sub reference, just the whol e input

line is passed to it as an argunent.

ub nai nLoop # ($srvsock, $% abel s)

ny $srvsock = shift;
ny $l abels = shift;

ny $client_id = 0; # unique strings
our $poll =10C:Poll->new);

$srvsock->bl ocki ng(0) ;
$pol | - >mask($srvsock => POLLIN);
$srv_exit = 0;

while(!$srv_exit || keys %lients !
my $r = $poll->poll();
confess "poll failed: $!'" if ($r

if ($poll->events($srvsock)) {
while(1) {

ny $client = $srvsock->accept

if (defined $client) {
$cl i ent - >bl ocki ng(0);
$clients{++Sclient_id} = $c
print("Accepted client $c
$pol | - >mask($cl i ent

} elsif($!{EAGAIN} ||
| ast;

} else {

}
}
}

my ($id, $h, $mask, $n, $s);
while (($id, $h) = each %l ients)
no warnings; # or in tests prin

confess "accept failed: $!'";

$cur_cli = $id;
$mask = $pol | - >event s($h) ;
if (($mask & POLLHUP) && !defin

print("Lost client $client_

= 0) {

<0 & ! $!'{EAGAIN} && ! $!{EINTR});
0

lient;

lient_id\n");

=> (POLLI N| POLLHUP)) ;
$! {EINTR}) {

{

ts a lot of warnings about undefs

ed $out bufs{$id}) {
idin");

and the rest

56

Scheduling

_closedient($id, $h);
next ;

}
if ($mask & POLLOUT) {
$s = $out buf s{$i d};
$n = $h->syswrite($s);
if (defined $n) {
if ($n >= length($s)) {
del et e $out buf s{$i d};
now can accept nore input
$pol | - >mask($h => (POLLI N POLLHUP));
} else {
substr ($out buf s{$id}, 0, $n) ="";

}

} elsif(! $'{EAGAIN} && ! $!{EINTR}) {
warn "wite to client $id failed: $!'";
_closedient($id, $h);
next ;

}

}
if ($mask & POLLIN) {

$n = $h- >sysread($s, 10000);

if ($n == 0) {

print("Lost client $client_id\n");
_closedient($id, $h);
next ;

} elsif ($n > 0) {
$i nbuf s{$i d} .= $s;

} elsif(! ${EAGAIN} && ! $!{EINTR}) {
warn "read fromclient $id failed: $!'";
_closedient($id, $h);
next ;

}

}
The way this works, if there is no '\n' before ECF
the last line won't be processed
Al so, the whole output for all the input will be buffered
before it can be sent.
whi | e($i nbuf s{$id} =~ s/*(.*)\n//) {
ny $line = $1;
chonp $line;

local $/ = "\r"; # take care of a possible CR-LF in this block
chonp $line;
}
ny @ata = split(/,/, $line);
ny $l nane = shift @lata;
ny $l abel = $I abel s->{$l nane};
if (defined $label) {
if (ref($label) eq ' CODE') {
&Sl abel ($line);
} else {
ny $unit = $l abel ->get Unit();
confess "l abel '$lnane' received fromclient $id has been cl eared"
unl ess defined $unit;
eval {
$uni t - >makeArrayCal | ($l abel, @lata);
$uni t - >dr ai nFrane() ;
s

warn "input data error: $@nfromdata: $line\n" if $@

Main loop with a socket 57

} else {
warn "unknown | abel '$lnanme' received fromclient $id: $line

Thegeneral outlinefollowsthe single-threaded multiplexing server described in [Babkinl0]. mai nLoop() getstheserver
socket and a dispatch table of labels or functions as its arguments. It then proceeds with waiting for connections.

Once aconnectionisreceived, it gets added to the set of active connections, to get included in the waiting for theinput data.
The input data is read as simplified CSV (no commas in the middle of values, and no way to reprsent the NULL values
othar than for those omitted at the end of the line). It's expected to have the format:

name, opcode, dat a. . .
Such as:

wi ndow, OP_| NSERT, 5, AAA, 30, 30
wi ndow. query, OP_| NSERT
exit, OP_NOP

The name part is then used to find alabel in the dispatch table. Therest of the data is used to create arowop for that label
and execute it. ASyou can see, arow must contain at least the label name and opcode, or the execution will print an error
message on the server's standard error and return no response to the client in the socket.

If the dispatch table contains not a label but a simple function reference for some name, the rest of the row is not even
parsed, the function gets called without any arguments. If the exit is implemented as a function in the dispatch table, the
following would also work:

exit
The datais sent back to the client through buffering. To send some datato aclient, use

&out Buf (id, Stext);

The $i d isthe unique id of the client. How do you find, what is the id of the client you want to send the data to? When
aninput lineis processed, the main loop knows, from what client it was received. It putstheid of that client in the global
variable$Tri ceps: : X:: Si npl eServer: : cur_cli.Youcantakeitfrom thereand remember. If you want to reply
to the current client, you don't need to bother yourself with theid at all, just call

&out Cur Buf ($t ext);

If you remember anid for the future use, and the client disconnects before you call out Buf () , the call will have no effect.
Inany case, if aclient has disconnected, the further processing of its requests should usually be stopped, and thus checking
if the client is still connected is agood idea anyway:

if (exists $clients{$id}) {

... prepare the data for it
&out Buf (id, Stext);
} else {
... stop sending the data to this client

}

The client ids are not reused, so this check is always safe.

Once some output is buffered to send to a client, the further input from that client stops being accepted until the output
buffer drains. But the processing in the Triceps unit scheduler keeps running until it runs out of things to do before it
returns to the main loop. All this time the output buffer keeps collecting data without sending it to the client. Also, the
input buffer might happen to already contain multiple lines. Then all these lines will be processed before the data from the
output buffer starts being sent to the client. If arequest produces alarge amount of data, all this datawill be buffered first.

58 Scheduling

It'sasimplification but really the commercial CEP systems aren't doing awhole lot better: when asked for the contents of a
table/window/materliaized view, Coral8 and Aleri and Sybase (don't know about StreamBase but it might be not different
either) would make a copy of it first before sending the data. In some cases the copy is more efficient because it references
the rows rather than copying the whole byte data, but in the grand scheme of thingsit's all the same.

Internally the information about the client sockets and their buffersis kept in the global hashes %€ i ent s, % nbuf s,
%out buf s. It could be done aasingle hash of objects but thiswas simpler.

The loop exits when the global variable $Tri ceps: : X: : Si npl eServer: : srv_exit getsset (synchronoudly, i.e.
by one of the label handlers) to 1 and all the clients disconnect. The requirement for disconnection of all the clients makes
sure that all the output buffers get flushed before exit, and that was the easiest way to achieve this goal.

mai nLoop() relies on the listening socket being already created, bound and given to it as a parameter. The creation of
the socket and forking of a separate server process is wrapped in another function:

The server start function that creates the server socket,
renenbers its port nunber, then forks and

starts the main loop in the child process. The parent
process then returns the pair (port nunber, child PID).

@aram port - the port nunber to use; 0 will cause a unique free
port nunber to be auto-assigned
@aram | abel s - reference to the | abel hash, to be passed to nai nLoop()
@eturn - pair (port nunber, child PID) that can then be used to connect
to and control the server in the child process
ub startServer # ($port, $% abel s)

O HHHHHH R HHFHR

ny $port = shift;
ny $l abels = shift;

ny $srvsock = 1O : Socket:: | NET->new
Proto => "tcp",
Local Port => $port,
Li sten => 10,
) or confess "socket failed: $!'";
Read back the port, since the port 0 will cause a free port
to be auto-assigned.
$port = $srvsock->sockport() or confess "sockport failed: $'";
my $pid = fork();
confess "fork failed: $!" unless defined $pid,;
if ($pid) {
parent
$srvsock->cl ose();
} else {
child
&mai nLoop($srvsock, $l abel s);
exit(0);
}
return ($port, $pid);
}

Y ou can specify the server port 0 to request that the OS bind it to arandum unused port. The port number isthen read back
withsockport () . The pair of the port numer and the server's child processid is then returned as the result. The process
where the server runsisin this case just a child process, it's not properly daemonized.

For a simple complete example, let's make an echo server that would print back the rows it receives, as found in't /
xQuery.t:

our $rtTrade = Triceps:: RowType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded

Main loop with a socket 59

price => "fl oat 64",
size => "float64", # nunber of shares traded

);
use Triceps:: X :SinpleServer gwm:all);
ny $uEcho = Triceps:: Unit->new"uEcho");

ny $l bEcho = $uEcho- >nekelLabel ($rt Trade, "echo", undef, sub {
&out CurBuf ($_[1] ->printP() . "\n");

1)
ny $l bEcho2 = $uEcho- >nakelLabel ($rt Trade, "echo2", undef, sub {
&out Cur Buf (join(",", "echo", &Triceps::opcodeString($_[1]->get Opcode()),
$ [1]->getRow()->toArray()) . "\n");
1)

ny $l bExit = $uEcho->nekelLabel ($rtTrade, "exit", undef, sub {
$Triceps:: X :SinpleServer::srv_exit = 1;

1)

ny %di spatch;

$di spat ch{"echo"} = $Il bEcho;
$di spat ch{"echo2"} = $l bEcho2;
$di spatch{"exit"} = $l bExit;

ny ($port, $pid) = &Triceps:: X :SinpleServer::startServer(0, \%li spatch);
print STDERR "port=$port pid=$pid\n";

wai t pi d($pi d, 0);

exit(0);

It starts the server and waits for it to exit. wai t pi d() isused herein asimplified way too, it should properly be donein
aloop until it succeeds or an error other than El NTRis returned.

$rt Tr ade isthe row type for the expected data. Two labels, “echo” and “echo2” differ in the way they print the data
back: “echo” printsit in the symbolic form while “echo2” printsin CSV. Thelabel “exit” setsthe exit flag. Hereisasmall
session log from the client side (46651 is the port that got picked at random and printed by the server on the start):

$ telnet |ocal host 46651
Trying 127.0.0.1...
Connected to | ocal host.
Escape character is '""]'.
echo, OP_I NSERT, 1, a, 2, 3. 4
echo OP_I NSERT id="1" synbol ="a" price="2" size="3.4"
echo2, OP_INSERT, 1, a, 2, 3.4
echo, OP_I NSERT, 1, a, 2, 3. 4
exit, OP_NOP

"]

telnet> q

Connection cl osed.

The names in the dispatch table don't have to be the same as the names of the labels. It's often convenient to have them
the same but not mandatory.

The exit label was created manually in this example but SimpleServer also provides the functions that create an exit label
or an exit function, either of which can be placed into a dispatch table:

A dispatch function, sending anything to which will exit the server.
The server will not flush the outputs before exit.

#

Use |ike:

$dispatch{"exit"} = \&Triceps:: X :SinpleServer::exitFunc;

#

In this way the input line doesn't have to contain the opcode.

The alternative way is through nmakeExitLabel ().

60 Scheduling

sub exitFunc # ($line)

{

$srv_exit = 1;

—

Create a | abel, sending anything to which will exit the server.
The server will not flush the outputs before exit.

Use |ike:
$di spatch{"exit"} = &Triceps:: X :SinpleServer:: makeExitLabel ($uTrades, "exit");

In this way the input line has to contain at |east the opcode.
The alternative way is through exitFunc().

@aramunit - the unit in which to create the | abel
@ar am name - the |abel nane

@eturn - the newy created | abel object

ub nmakeExitLabel # ($unit, $nane)

O HHHHHHFHHHHHFHR

ny $unit = shift;
ny $nanme = shift;
return 3$unit->makelLabel ($unit->get Enpt yRowType(), $nanme, undef, sub {
$srv_exit = 1;
1)
}

nmakeExi t Label () isquite smple, it creates alabel with hardcoded function of setting the flag $srv_exi t . Evenits
row typeis hardcoded to the empty rows. exi t Func() setsthe same flag directly.

There is also a function for making the labels that output their rows to the client in CSV format (as usual, no commasin
the values, the same as is expected by the socket server):

Create a label that will print the data in CSV format to the server output
(to the current client).

@aram fronmLabel - the new | abel will be chained to this one and get the
data fromit

@aram printNane - if present, overrides the |abel name printed

@eturn - the newy created | abel object

ub nmakeServer Qut Label # ($fronmliabel [, $printNane])

O H R HHHHFH

warni ngs; # or in tests prints a |lot of warnings about undefs
$from_abel = shift;

$printNane = shift;

$unit = $fronlLabel ->getUnit();

$f romNanme = $f ronlLabel - >get Nane() ;

(! $printName) {

$print Name = $f romNane;

-33333

—

ny $l bQut = $unit->makelLabel ($fronlabel - >get Type(),
$fromNane . ".serverQut", undef, sub {
&out Cur Buf (join(",", $printName,
&Triceps::opcodeString($_[1] - >get Opcode()),
$ [1]->getRowm)->toArray()) . "\n");
1)
$f r onlLabel - >chai n($l bQut) ;
return $l bQut;

}

makeSer ver Qut Label () findsthe unit and row type from the parent label, creates the printing label and chainsit off
the parent label. The newly created label is returned. The return value can be kept in avariable or immediately discarded;

Main loop with a socket 61

since the created label is already chained, it won't disappear. Tha name of the new label is produced from the name of the
parent label by appending “.serverOut” to it.

Running the automated tests of the servers requires the clients to be started automatically too, feed the input, receive the
results, and then compare them to the expected results. The package Triceps::X::DumbClient from | i b/ Tri ceps/ X/
Dunbd i ent . pmdoes exactly that. The server code gets created as usual, only instead of starting the server, the dispatch
tableis given to the DumbClient method that takes care of starting the server, feeding the input, collecting the results, and
waiting for the server to stop.

For example, the same echo example is run like this with DumbClient:
use Triceps:: X :SinmpleServer gw:all);
ny $uEcho = Triceps:: Unit->new"uEcho");

ny $l bEcho = $uEcho- >nmakelLabel ($rt Trade, "echo", undef, sub {
&out CurBuf ($_[1] ->printP() . "\n");

1)
ny $l bEcho2 = $uEcho- >makelLabel ($rt Trade, "echo2", undef, sub {
&out Cur Buf (join(",", "echo", &Triceps::opcodeString($_[1]->get Opcode()),
$ [1]->getRow()->toArray()) . "\n");
1)

ny $l bExit = $uEcho->nakelLabel ($rtTrade, "exit", undef, sub {
$Triceps:: X :SinpleServer::srv_exit = 1;
1)

ny %di spat ch;

$di spat ch{"echo"} = $I bEcho;
$di spat ch{"echo2"} = $l bEcho2;
$di spatch{"exit"} = $| bExit;

nmy @nput Query = (
"echo, OP_I NSERT, 1, a, 2, 3.4\ n",

"echo2, OP_I NSERT, 1, a, 2, 3. 4\ n",
);
my $expect Query =
' > echo, OP_I NSERT,

1,a,2,3.4
> echo2, OP_INSERT, 1,4a, 2,3.4
echo OP_I NSERT id="1" synbol ="a" price="2" size="3.4"
4

echo, OP_I NSERT, 1, a, 2, 3.

Triceps:: X : Test Feed: : set | nput Li nes(@ nput Query);
Triceps:: X :DunmbClient::run(\%i spatch);

ok(&Triceps:: X: : Test Feed: : get Resul tLi nes(), $expect Query);
DumbClient works in symbiosis with the TestFeed module that handles the recorded inputs and outputs. Note that the
“exit” lineis not there, DumbClient adds it implicitly at the end of the input.

The input lines are also included by TestFeed in the output with the “> " prepended to them. DumbClient feeds all the
inputsfirst and then reads all the results, relying on the TCP buffering to avoid deadlocking on the flow control. Thisworks
only for the small amounts of input but is good enough for the small tests.

And the implementation of DumbClient isfairly small, there is only one method:
sub run # (3%l abel s)
ny $l abels = shift;

ny ($port, $pid) = Triceps:: X :SinpleServer::startServer(0, $labels);

62 Scheduling

ny $sock = 1O : Socket: : | NET->new

Proto => "tcp",

Peer Addr => "l ocal host ",

Peer Port => $port,
) or confess "socket failed: $!'";
whi |l e(& readLi ne) {

$sock->print ($);

$sock->fl ush();
}
$sock->print("exit, OP_I NSERT\n");
$sock->fl ush();
$sock- >shut down(1); # SHUT_WR
whi | e(<$sock>) {

& send($);

}
wai t pi d($pi d, 0);
}

As mentioned before in Section 4.8: “The Perl libraries and examples’ (p. 25) , the methods r eadLi ne and send are
imported from the TestFeed module.

7.10. Tracing the execution

When devel oping the CEP models, there always comes the question: WTF had just happened? How did it manage get this
result? Followed by subscribing to many intermediate results and trying to piece together the execution order.

Triceps providestwo solutionsfor thissituation: First, the procedural approach should makethelogic much easier tofollow.
Second, it has a ready way to trace the execution and then read the trace in one piece. It can aso be used to analyze any
variables on the fly, and possibly stop the execution and enter some manua mode.

The idea hereis simple: provide the Unit with amethod that will be called:

before alabel executes,

* before the chained |abels execute,
+ after the chained labels execute,

* after the label executes,

 beforethelabel'sframeisdrained (and thus the forked rowops execute, see the details of that in Section 7.11: “ The gritty
details of Triceps scheduling” (p. 69)),

 dfter the frameisdrained.

The calls around the chaining and around the draining are done only if there are the chained labelsto call or forked rowops
to drain accordingly. Otherwise these pairs are skipped.

The tracing calls happen in the order shown above. The call after the label executes goes after the chained calls (if any),
enveloping them. However the draining calls happen after that (and no matter how many rowops were forked onto that
frame, there will be only one after-draining call per frame, still referring to the original 1abel).

For the simple tracing, a small ssimple tracer is provided. It actually executes directly as compiled in C++ so it's quite
efficient:

$tracer = Triceps::UnitTracerStringNane(option => $value, ...);

The arguments are specified as the option name-value pairs.

Tracing the execution 63

The only option supported is“verbose”’, which may be 0 (default) or non-0. If it's 0 (false), the tracer will record amessage
only before executing each label. If true, it will record amessage on each stage. The classis named UnitTracerStringName
because it records the execution trace in the string format, including the names of the labels. The tracer is set into the unit:

$uni t->set Tracer ($tracer);
The unit's current tracer can also be read back:
$ol dTracer = $unit->get Tracer();

If no tracer was previoudly set, get Tr acer () will return undef . And undef can also be used as an argument of
set Tracer (), to cancel any previously set tracing.

The tracer references can be compared for whether they refer to the same underlying object:
$result = $tracerl->sane($tracer?2);

There are multiple kinds of tracer objects, and sane() can be caled safely for either kind of tracer, including mixing
them together. Of course, the tracers of different kinds definitely would not be the same tracer object.

Asthe unit runs, the tracing information gets collected in the tracer object. It can be extracted back with:
$data = S$tracer->print();

This does not reset the trace. To reset it, use:

$tracer->clearBuffer();

Here is a code sequence designed to produce afairly involved trace:

$sntr = Triceps::UnitTracerStringName- >new(verbose => 1);
$ul- >set Tracer ($sntr);

$c_labl = $ul->makeDummylLabel ($rt1, "labl");
$c_lab2 = $ul->makeDummylLabel ($rt1, "l ab2");
$c_l ab3 = $ul->makeDummylLabel ($rt1, "lab3");
$c_opl = $c_| abl- >makeRowop(&Tri ceps: : OP_I NSERT, $rowl);
$c_op2 = $c_| abl- >makeRowop(&Tri ceps: : OP_DELETE, $rowl);

$c_l abl- >chai n($c_l ab2);
$c_I abl- >chai n($c_I| ab3);
$c_I ab2- >chai n($c_I ab3);

$ul->schedul e($c_opl);
$ul->schedul e($c_op2);

$ul->drai nFrame();

Thetraceis:

unit 'ul' before label 'labl" op OP_I NSERT {

unit 'ul' before-chained | abel 'labl" op OP_I NSERT ({

unit 'ul' before label 'lab2' (chain 'labl') op OP_I NSERT {

unit 'ul' before-chained | abel 'lab2' (chain 'labl') op OP_I NSERT {
unit 'ul' before label 'lab3" (chain 'lab2') op OP_I NSERT {

unit 'ul' after label 'lab3" (chain 'lab2') op OP_I NSERT }

unit 'ul' after-chained |abel 'lab2'" (chain 'labl') op OP_I NSERT }
unit 'ul' after label 'lab2'" (chain 'labl') op OP_I NSERT }

unit 'ul' before label 'lab3" (chain 'labl') op OP_I NSERT {

unit 'ul' after label 'lab3" (chain 'labl') op OP_I NSERT }

unit 'ul' after-chained |abel 'labl" op OP_I NSERT }

unit 'ul' after label 'labl" op OP_I NSERT }

64 Scheduling

unit 'ul' before |label 'labl" op OP_DELETE {

unit 'ul' before-chained | abel 'labl" op OP_DELETE ({

unit 'ul' before label 'lab2' (chain 'labl') op OP_DELETE {

unit 'ul' before-chained | abel 'lab2' (chain 'labl') op OP_DELETE {
unit 'ul' before label 'lab3" (chain 'lab2') op OP_DELETE {

unit 'ul' after label 'lab3" (chain 'lab2') op OP_DELETE }

unit 'ul' after-chained |abel 'lab2" (chain 'labl') op OP_DELETE }
unit 'ul' after label 'lab2'" (chain 'labl') op OP_DELETE }

unit 'ul' before label 'lab3" (chain 'labl') op OP_DELETE {

unit 'ul' after label 'lab3" (chain 'labl') op OP_DELETE }

unit 'ul' after-chained |abel 'labl" op OP_DELETE }

unit 'ul' after label 'labl" op OP_DELETE }

The print-out is not indented because the execution of real models tends to involve some quite long call chains, which
would result in some extremely wide indenting. Instead the curly braces at the end of each line help to find the matching
pair. You can always use thevi command %to jump to the matching brace, or asimilar feature in the other editors.

In non-verbose mode the same trace would be:

unit 'ul' before label 'labl" op OP_I NSERT

unit 'ul' before label 'lab2' (chain 'labl') op OP_I NSERT
unit 'ul' before label 'lab3" (chain 'lab2') op OP_I NSERT
unit 'ul' before label 'lab3" (chain 'labl') op OP_I NSERT
unit 'ul' before label 'labl' op OP_DELETE

unit 'ul' before label 'lab2' (chain 'labl') op OP_DELETE
unit 'ul' before label 'lab3" (chain 'lab2') op OP_DELETE
unit 'ul' before label 'lab3" (chain 'labl') op OP_DELETE

The non-verbose trace doesn't have the curly braces because there are no matching pairs of lines.

The actual contents of the rowsisnot printed in either case. Thisisbasically because the tracer isimplemented in C++, and
I've been trying to keep the knowledge of the meaning of the simple data types out of the C++ code as much as possible
for now. But it can be implemented with a Per| tracer.

A Perl tracer is created with:
$tracer = Triceps::UnitTracerPerl->new($sub, @rgs);

The arguments are areference to a function, and optionally arguments for it. The resulting tracer can be used in the unit's
set Tracer () asusua. A source code string may be used instead of the function reference, see Section 4.4: “Code
references and snippets’ (p. 21) .

The function of the Perl tracer gets called as:

&Bsub($uni t, $l abel, $fronlabel, $rowop, $when, @rgs)
The arguments are:

* $uni t istheusua unit reference.

e $l abel isthe current label being traced.

» $f romLabel istheparentlabel inthe chaining (would beundef if thecurrent label iscalled directly, without chaining
from anything).

» $r owop isthe current row operation.

 $when is an integer constant showing the point when the tracer is being cdled. It's value
may be one of &Triceps:: TWBEFORE, &Triceps:: TWAFTER, &Triceps:: TW BEFORE DRAI N,
&Tri ceps: : TWAFTER DRAI N, &Tri ceps: : TW BEFORE_CHAI NED, &Tri ceps: : TW AFTER_CHAI NED;
the prefix TWstands for “tracer when”.

Tracing the execution 65

e @r gs arethe extra arguments passed from the tracer creation.

The TW * constants can as usual be converted to and from strings with the calls

$string = &Triceps::tracerVWenString($val ue);
$val ue = &Triceps::stringTracerWen($string);
$string = &Triceps::tracer\WenStringSaf e($val ue);
$val ue = &Triceps::stringTracerWenSafe($string);

There aso are the conversion functions with strings more suitable for the human-readable messages: “before”, “after”,
“before-chained”, “after-chained”, “before-drain”, “after-drain”. These are actually the conversions used in the UnitTrac-
erStringName. The functions for them are:

$string = &Triceps::tracerWienHumanSt ri ng($val ue);
$val ue = &Triceps::humanStringTracer When($string);
$string = &Triceps::tracerWienHumanSt ri ngSaf e($val ue) ;
$val ue = &Triceps::humanStringTracer WhienSaf e($string);

Now that the constants have been mentioned, the order of tracing calls for a single executing rowop on asingle labdl is:

TW BEFORE
TW BEFORE_CHAI NED
TW AFTER_CHAI NED
TW AFTER

TW BEFORE_DRAI N
TW AFTER DRAI N

Thereisaso agenera way tofind, if the $when refersto a“before” or “after” situation:

$resul t
$resul t

&Tri ceps: : tracerWienl sBef or e($when) ;
&Tri ceps: :tracerWienl sAft er ($when);

Their typical usage in atrace function, to append an opening or closing brace, looks like:

if (Triceps::tracerWenl sBefore($when)) {

$rTBg = " {u :
} elsif (Triceps::tracerWenlsAfter($when)) {
$rTBg . = " }II .

}

More trace pointsthat are neither “before” or “after” could get added in the future, so agood practiceisto use an elsif with
both conditions rather than a simple if/el se with one condition.

The Perl tracers allow to execute any arbitrary actions when tracing. They can act as breakpoints by looking for certain
conditions and opening a debugging session when those are met.

For an example of a Perl tracer, let's start with a tracer function that works like UnitTracerStringName:

sub tracerCbh() # unit, label, froniLabel, rop, when, extra
{

ny ($unit, $label, $from S$rop, $when, @xtra) = @;

our $history;

ny $nsg = "unit '" . $unit->get Nane()
Triceps::tracerWenHumanStri ng($when) . " | abe
$l abel - >get Nanme() "

if (defined $froniLabel) {

$nsg .= "(chain '" . $fronlLabel ->getNanme() . "')
}
$nsg .= "op " . Triceps::opcodeString($rop->get Opcode());
if (Triceps::tracerWenl sBefore($when)) {

$meg .= " {";

66 Scheduling

}

} elsif (Triceps::tracerWenlsAfter($when)) {
$meg .= "}

}

$msg .= "\n";

$history .= $nsQ;

undef $history;
$ptr = Triceps::UnitTracerPerl->new(\ & racerCh);
$ul- >set Tracer ($ptr);

It'sdlightly different, in the way that it always produces the verbose trace, and that it collectsthe tracein the global variable

$hi st or y. But the resulting text is the same as with UnitTracerStringName.

Now let'simprove on it by printing the whole rowop contentstoo. In a*proper” way this advanced tracer would be defined
as a class constructing the tracer objects. But to reduce the amount of code let's just make it a standalone function to be
used with the Perl tracer constructor.

And for something different let's make the result indented, with two spaces per indenting level. As mentioned before, the
indenting is actually not such agreat idea. But for the small short examplesit works well. The function would take 3 extra
arguments:

Verbosity, a boolean value.

Reference to an array variable where to append the text of the trace. This is more flexible than the fixed $hi st ory.
The array will contain the lines of the trace as its elements. And appending to an array should be more efficient than

appending to the end of a potentially very long string.

Reference to ascalar variable that would be used to keep the indenting level. The value of that variable will be updated

asthe tracing happens. Itsinitial value will determine theinitial indenting level.

sub traceStri ngRowop

{

}

my ($unit, $label, $fronLabel, $rowop, $when,
$verbose, $rlog, $rnest) = @;

if ($verbose) {

${$rnest}-- if (Triceps::tracerWenl sAfter($when));
} else {

return if ($when !'= &Triceps:: TWBEFORE);
}

ny $nsg = "unit '" . $unit->get Name()
Triceps::tracerWenHumanStri ng($when) . " | abel
$l abel - >get Nanme()

if (defined $froniLabel) {

$nsg .= "(chain '" . $fronlLabel ->getNane() . "') "
}
ny $tail =""
if (Triceps::tracerWenl sBefore($when)) {

$tail =" {";

} elsif (Triceps::tracerWenlsAfter($when)) {
$tail =" }";

}
push (@%rlog}, (" " x ${$rnest}) . $msg . "op "
$rowop->printP() . $tail);

if ($verbose) {

${$rnest}++ if (Triceps::tracerWenl sBefore($when));

}

Tracing the execution

67

undef @i story;

ny $tnest = O0; # keeps track of the tracing nesting | eve

$ptr = Triceps::UnitTracerPerl->new(\ & raceStri ngRowop, 1, \@istory, \S$tnest);
$ul- >set Tracer ($ptr);

For the same call sequence as before, the output will be asfollows (I've tried to wrap the long linesin alogically consistent
way but it still spoils the effect of indenting a bit):

unit 'ul' before label 'labl" op |labl OP_I NSERT a="123" b="456"
c="789" d="3.14" e="text" {
unit 'ul' before-chained |abel 'labl' op |abl OP_I NSERT a="123"
b="456" c="789" d="3.14" e="text" {
unit 'ul' before label 'lab2' (chain 'labl') op | abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" ({
unit 'ul' before-chained |abel 'lab2' (chain 'labl') op labl
OP_I NSERT a="123" b="456" c¢="789" d="3.14" e="text" {
unit 'ul' before label 'lab3" (chain 'lab2') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' after label 'lab3" (chain 'lab2') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after-chained label 'lab2' (chain 'labl') op |abl
OP_I NSERT a="123" b="456" c¢="789" d="3.14" e="text" }
unit 'ul' after label 'lab2' (chain 'labl') op | abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' before label 'lab3" (chain 'labl') op | abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" ({
unit 'ul' after label 'lab3" (chain 'labl') op |abl OP_I NSERT
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after-chained label 'labl" op |abl OP_I NSERT a="123"
b="456" c="789" d="3.14" e="text" }
unit 'ul' after label 'labl'" op |abl OP_I NSERT a="123" b="456" c="789"
d="3. 14" e="text" }
unit 'ul' before label 'labl" op |l abl OP_DELETE a="123" b="456"
c="789" d="3.14" e="text" ({
unit 'ul' before-chained |abel 'labl' op | abl OP_DELETE a="123"
b="456" c="789" d="3.14" e="text" {
unit 'ul' before label 'lab2' (chain 'labl") op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' before-chained | abel 'lab2' (chain 'labl') op labl
OP_DELETE a="123" b="456" c¢="789" d="3.14" e="text" {
unit 'ul' before label 'lab3" (chain 'lab2') op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' after label 'lab3" (chain 'lab2') op |l abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after-chained label 'lab2' (chain 'labl') op |abl
OP_DELETE a="123" b="456" c¢="789" d="3.14" e="text" }
unit 'ul' after label 'lab2' (chain 'labl') op |l abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' before label 'lab3" (chain 'labl"') op |abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" {
unit 'ul' after label 'lab3" (chain 'labl') op |l abl OP_DELETE
a="123" b="456" c="789" d="3.14" e="text" }
unit 'ul' after-chained |abel 'labl" op |l abl OP_DELETE a="123"
b="456" c="789" d="3.14" e="text" }
unit 'ul' after label 'labl' op |abl OP_DELETE a="123" b="456" c="789"
d="3. 14" e="text" }

As mentioned before, each label produces two levels of indenting: one for everything after “before”, another one for the
nested |abels.

Eventually this tracing should become another standard classin Triceps.

68 Scheduling

7.11. The gritty details of Triceps scheduling

There are four ways of executing arowop in Triceps:
Cal:

Execute the label right now, including all the nested calls. When the call returns, the execution is completed. Thisis
the most typical way, and the only one described in detail so far.

Schedule:
Execute the label after everything else is done.
Fork:

Execute the label after the current label returns but before its caller gets the control back or anything else is done.
Obvioudly, if multiple labels are forked, they will execute in the order they were forked. The forked labels can be seen
as“little siblings’ of the current label. Forking is currently not used much, other than for the special case of looping.

Loop:

Execute the label asthe start of the next iteration of the topological loop, after the current iteration is fully completed.
Thisisaspecial case of fork, essentially forking at the level of the loop's first label.

The common term encompassing all of themis*“enqueue’. “ Enqueue’ isan ugly word but since I've already used the word
“schedule” for a specific purpose, | needed another word to name all these operations together. Hence “ enqueug’”.

The meaning is kind of intuitively straightforward but the details might sometimes be a bit surprising. So let us look in
detail at how it works inside on an example of afairly convoluted scheduling sequence.

A scheduler in the execution unit keeps not just asingle queue but astack of queuesthat contain the rowopsto be executed.
The rowops get into the queues when they are forked or looped or scheduled. Each queue is essentially a stack frame, so
I'll be using the terms queue and frame interchangeably. The stack always contains at least one queue, which is called the
outermost stack frame.

When the new rowops arrive from the outside world, they can be added with the method schedul e() tothat stack frame.
That'swhat schedul e() does: always adds rowops to the outermost stack frame, no matter how many frames might be
pushed on top of it. If rowops 1, 2 and 3 are added, the stack looks like this (the brackets denote a stack frame):

[1, 2, 3]

The unit method dr ai nFr ane() isthen used to run the scheduler and process the rowops. It makes the unit call each
rowop on the innermost frame (which isinitially the same as outermost frame, since there is only one frame) in order.

First it callsthe rowop 1. It's removed from the queue, then a new frame is pushed onto the stack:

[1 ~1
[2, 3]

This new frame is the rowop 1's frame, which is marked on the diagram by “~1". The diagram shows the most recently
pushed, innermost, frame on top, and the oldest, outermost frame on the bottom. The concepts of “innermost” and “ outer-
most” come from the nested calls: the most recent call is nested the deepest in the middle and is the innermost one.

Then the rowop 1 executes. If it calls rowop 4, another frame is pushed onto the stack for it:

[] ~4
[1 -1

The gritty details of Triceps scheduling 69

[2, 3]

Then the rowop 4 executes. The rowop 4 never gets onto any of the queues. The call just pushes a new frame and executes
the rowop right away. The identity of rowop being processed is kept in the call context. A call also involves a direct C++
call on the thread stack, and if any Perl code isinvolved, a Perl call too. Because of this, if you nest the calls too deeply,
you may run out of the thread stack space and get it to crash.

After the rowop 4 isfinished (not calling any other rowops), the innermost empty frame is popped before the execution of
rowop 1 continues. The queue stack reverts to the previous state.

[] -1
[2, 3]

Suppose then rowop 1 forks rowops 5 and 6 by calling the Unit method f or k() . They are appended to the innermost
frame in the order they are forked.

[5, 6] ~1
[2, 3]

If rowop 1 then calls rowop 7, again aframe is pushed onto the stack before it executes:

[1 ~7
[5, 6] ~1
[2, 3]

The rowops 5 and 6 still don't execute, they keep sitting on the queue until the rowop 1 would return. After the call of
rowop 7 completes, the scheduler stack returns to the previous state.

Suppose how the execution of rowop 1 completes. But its stack frame can not be popped yet, because it is not empty. Now
is the time to execute the rowops from it. It's aso called “frame draining” but if works somewhat differently in the case
of the forked rowops. The first rowop gets picked from the frame and called, but in a special way. It doesn't get its own
frame. Instead, it takes over the frame of its parent rowop. The frame that was marked “~1" now changes its marking to
“~5” because of that take-over:

[6] ~5
[2, 3]

If the rowop 5 forks rowop 8, the stack becomes:

[6, 8 -5
[2, 3]

Since the frame was inherited from the parent rowop 1, the rowop 8 just gets appended to the end of it after rowop 6.
The rowops forked in the same frame are executed in the order they were forked. Unlike the calls, there is no nesting
involved in forking.

When the execution of rowop 5 returns, the execution of the forked rowops from the innermost frame continues. The rowop
6 gets picked from the front of the frame and takes over the frame ownership:

[8] ~6
[2, 3]

Suppose the rowop 6 doesn't call or fork anything else and returns. Then the rowop 8 starts executing and takes over the
frame:

[1 -8
[2, 3]

Suppose rowop 8 callsschedul e() of rowop 9. Rowop 9 is then added to the outermost queue:

[1 -8

70 Scheduling

[2, 3, 9]
Rowaop 8 then returns, its queue is empty, so it's popped and its call compl etes.
[2, 3, 9]

Themethod dr ai nFr ame() keepsrunning on the outermost frame, now taking the rowop 2 and executing it, and so on,
until the outermost queue becomes empty, and dr ai nFr ane() returns.

Aninteresting question is, what happens with the chained labels? Where do they fit in the order of execution? They turn out
tobesimilartoaf or k() . The presence of chaining gets checked after the original label completesits execution but before
executing any of theforked labelsfromitsframe. If any chained labelsare found, they are called one by one. They take over
the frame of the parent, just like the forked labels. Any of the chained labels may also call f or k() , adding more labelsto
the frame. The next forked label (if any) gets executed only after all the labels chained from the current one are done.

What would happen if dr ai nFr ame() iscalled not from outside the model but from inside some label handler? It will
drain the innermost frame. Suppose that the queue stack was in the following state, with rowop 5 executing:

[6, 8] ~5
[2, 3]

If the label handler of the rowop 5 callsdr ai nFr ame() now, dr ai nFrame() will do itsusual job: pick the rowops
one by one from the innermost frame, create the nested frames for them and execute. So first it will pick up the rowop 6:

[] -6
[8] ~5
[2, 3]
After the rowop 6 completes, its frame gets popped:

[8] ~5
[2, 3]

But dr ai nFrame() continuesrunning, and now picks the rowop 8:
[] -8

[1 -5

[2, 3]

After the rowop 8 completes, its frame gets al so popped:

[1 ~5
[2, 3]

At this point the innermost frame becomes empty and dr ai nFr ane() returns. The label handler of rowop 5 continues
its execution.

If you haven't forked anything, the innermost frame will be empty, and dr ai nFr ame() will do nothing. If you did fork
some rowops, dr ai nFrame() looks like a convenient way to call them now and then continue. However note that in
this case the semanticsis different from the normal forking. The rowops from the frame will be called in the nested frames,
not taking over the origina frame. So if say rowop 6 refers to the same label as rowop 5, this nested execution will be
considered arecursive call of the samelabel. Thusdr ai nFrane() isbest used only with the outermost frame.

What if the rowop 1 weren't scheduled and then drained but was just directly called? The outermost frame will remain
empty, while a new frame will be pushed for the rowop 1 as usual:

[] -1
[]
If the rowop 1 executed the same code as before, after the call it will leave the rowop 9 scheduled on the outermost frame:

[9]

The gritty details of Triceps scheduling 71

To execute therowop 9, call dr ai nFrane() , or it will be stuck there forever.

Note that the execution order differs depending on whether the incoming rowops were scheduled or directly called, and
on when thedr ai nFr ane() iscalled. If the three rowops were scheduled and then drained, the execution order will be
1, 2, 3, 9. If they were called directly with draining the frame after each one, the order will be 1, 9, 2, 3. And if they were
called directly but with draining only after the last one, it would be again 1, 2, 3, 9.

The loop scheduling is awhole big separate subject that will be discussed in the next section.

7.12. The gritty details of Triceps loop
scheduling

Now it'stimeto look at what is really going on when atopological loop gets executed. Let's continue looking at the loop
example that was aready shown in Figure 7.1 (page 46) .

If the loop were handled simple-mindedly, with all the execution done by calls, it could use alot of stack space. Suppose
some rowop X1 is scheduled for label X, and causes the loop to be executed twice, with rowops X1, A2, B3, C4, A5,
B6, C7, Y8. If each operation isdoneasacal | (), the stack grows like this: It starts with X1 called, creating its own
execution frame (marked as such for clarity):

[] X1
[]

Which then calls A2:

[] ~A2

[1 X1

[]

Which then continues the calls in sequence. By the time the execution comesto Y 8, the stack looks like this:

~Y8
~C7
~B6
~A5
~C4
~B3
~A2
~X1

—— — —— — ———
[O S S Sy Sy S

The loop has been converted into recursion, and the whole length of execution is the depth of the recursion. If the loop
executes amillion times, the stack will be three million levels deep. Worse yet, it's not just the Triceps scheduler stack that
grows, it's also the process (C++ and Perl) stack.

Which is why this kind of recursive calls is forbidden by default in Triceps. If you try to do it, on the first recursive call
the execution will die with an error. You can enable the recursion but this only lets the stack grow and doesn't prevent
the growth.

Would things be better with f or k() instead of cal | () used throughout the loop? It starts the same way:
[X1]
Then X1 executes, getsits own frame and forks A2:

[A2] ~X1
[]

Then A2 inherits the stack frame and executes, forks B3:

72 Scheduling

[B3] -A2
[]

On each step the frame will be inherited by the next label, and if Y8 isalso eventually forked, at the end the stack will be:

[] ~Y8
[]

Problem solved, no matter how many iterations were done by the loop, the stack will stay limited.

The catch though is that every operation inside the loop must be done with a f or k() . If there is even one cal | ()
occuring in the loop, the stack will grow by aframe for each cal | () and may become quite deep again. The problem is
that cal | () is hardcoded in many primitives, such as Tables, and is fairly typically used in the templates as well. The
historic solution for that was to specify for each table, how it should handle its results, call them or fork them or even
schedule them. And the templates could use a similar approach.

The practice had quickly showed that not only all this explicit choice is quite cumbersome and easy to miss, but also the
semantics of f or k() isdifferent fromcal | () inavery annoying way. If some label wantsto do something, call some
other label, then do something more using the result of the call, doing it with cal | () is simple: just execute al this
proceduraly in sequence. After cal | () returns, itswork is guaranteed to be done and any global state to be updated. Not
sowith f or k() that just putsthe rowop onto a queue, there just isn't any way to get the second half of the original label's
code to execute only after all the effects from the forked rowop had propagated. (Historically f or k() worked differently
in Triceps 1.0 and did allow to reproduce the call semantics through some minor contortions but then it kept growing the
stack on every fork, just as the calls do).

The solution, even back in the version 1.0 days, was to add a special method for the loop scheduling.

It starts with the concept of the frame mark. A frame mark is a token object, completely opaque to the program. It can
be used only in two operations:

e set Mar k() remembersthe position in the frame stack, just outside the current frame.
* | oopAt () enqueuesarowop at the marked frame.

Then the loop wold have its mark object M. The label A will execute set Mar k(M , and the label C will execute
| oopAt (M rowop(A)).Therest of the execution can aswell usecal | (), asshowninFigure7.1.

call call call call
X —» A —» B —» C Y
setMark
loopAt

Figure7.2. Proper callsin aloop.

When the label A executesthe rowop A2, first thingsit doesis calling setMark(M). After that the stack will look like this:

[1 ~A2, mark M
[1 X1
[]

The gritty details of Triceps loop scheduling 73

The mark M remembers the current frame. The stack at the end of C4, after it hascalled | oopAt (M A5) ,is:

[] ~C4
[1 ~-B3
[A5] ~A2, mark M
[] ~-X1

[]
The stack then unwinds until A5 starts its execution:

[1T ~A5, mark M
[] X1
[]

When A5 inherits the stack frame from A2, the mark M stays put. The label A would normally call set Mar k(M) again
anyway, but it will just put the mark onto the same frame, so effectively it's a no-operation.

Thus each iteration starts with a fresh stack, and the stack depth is limited to one iteration. The nested loops can also be
properly executed.

After Y8 completes, the stack will unroll back, and X1 can continue its execution:

[] X1
[]

To reiterate, when the control returns back to X1, the whole loop is done.

What happens after the stack unwinds past the mark? The mark gets unset. When someone calls| oopAt () with an unset
mark, the rowop is enqueued in the outermost frame, having the same effect asschedul e() .

It's possible to use this handling of an unset mark to some creative effects. It allows the loops to take a pause in the middle.
Suppose the label B finds that it can't process the rowop B3 until some other data has arrived. What it can do then is
remember B3 somewhere in the thread state and return. The loop has not completed but it can't progress either, so the call
unrolls until it becomes empty. In this case the code of label X must be prepared to find that the loop hadn't completed yet
after the call of A2 returns. Since the frame of X1 is popped off the stack, the mark M gets unset. The knowledge that the
loop needs to be continued stays remembered in the state.

After sometime that awaited data arrives, as some other rowop. When that rowop gets processed, it will find that remem-
bered state with B3 and will make it continue, maybe by calling cal | (B3) again. So now thelogic in B finds all the data
it needs and continues with the loop, calling C4. C4 will doitsjob and call | oopAt (M A5) . But the mark M has been
unset a while ago! Scheduling A5 at the outermost frame seems to be a logical thing to do at this point. Then whatever
current processing will complete and unwind, and the loop will continue after it. When the rowop A5 gets executed, the
label A will call set Mar k(M again, thus setting the mark on its new frame, and making the loop run as far as it can
before executing any other scheduled rowops.

Overdl, pausing and then restarting a loop like this is not such a good idea. The caller of the loop normally expects that
it can wait for the loop to complete, and that when the loop returns, it's all done. If aloop may decide to bail out now and
continue later, the effects may be quite unexpected.

7.13. Recursion control

Historically, the recursive calls (when alabel calsitself, directly or indirectly) have been forbidden in Triceps. Mind you,
the recursive calling could still be done even then with the help of trays and forking. And it's probably the best way too
from the standpoint of correctness. However it's not the most straightforward way, and the real recursion still comes handy
onceinawhile.

Now the recursion is alowed in its direct way. Especially that it doesn't have to be all-or-nothing, it can be done in a
piecemeal and controlled fashion.

74 Scheduling

It's controlled per-unit. Each unit has two adjustable limits:

Maximal stack depth:
Limits the total depth of the unit's call stack. That's the maximal length of the call chain, whether it goes straight or
inloops.

Maximal recursion depth:
Limitsthe number of times each particular |abel may appear on the call stack. Soif you have arecursive code fragment
(asimple-minded loop or arecursive streaming function), thisisthe limit on its recursive reentrances.

Both these limits accept the 0 and negative values to mean “unlimited”.

The default isasit has been before: unlimited stack depth, recursion depth of 1 (which means that each label may be called
once but it may not call itself). But now you can change them with the calls:

$uni t - >set MaxSt ackDept h($n) ;
$uni t - >set MaxRecur si onDept h($n) ;

Y ou can change them at any time, even when the unit is running (but they will be enforced only on the next attempt to
execute arowop).

Y ou can aso read the current values:

$n
$n

$uni t - >maxSt ackDept h() ;
$uni t - >maxRecur si onDept h() ;

Another thing about the limits is that even if you set them to “unlimited” or to some very large values, there till are the
system limits. The calls use the C++ process (or thread) stack and the Perl stack, and if you make too many of them, the
stack will overflow and the whole process will crash and possibly dump core. Keeping the call depths within reason is
till agood idea.

Now you can do the direct recursion. However as with the procedural code, not all the labels are reentrant. Some of them
may work with the static data structures that can't be modified in a nested fashion. Think for example of atable: when you
modify atable, it sends rowopsto its“pre” and “out” labels. Y ou can connect the other labels there, and react to the table
modifications. However these labels can't attempt to modify the same table, because the table is already in the middle of
amodification, and it's not reentrant.

Thetable still hasaseparate |ogic to check for non-reentrance, and no matter what isthe unit'sgeneral recursion depth limit,
for the table it always stays at 1. Moreover, the table enforces it across both the input label interface and the procedural
interface.

If you make your own non-reentrant labels, Triceps can make this check for you. Just mark the first label of the non-
reentrant sequence with

$l abel - >set NonReentrant () ;

It will have its own private recursion limit of 1. Any time it's attempted to execute recursively, it will confess. There is
no way to unset this flag: when alabel is known to be non-reentrant, it can not suddenly become reentrant until its code
is rewritten.

Y ou can read this flag with

$val = $l abel - >i sNonReentrant () ;

Recursion control 75

76

Chapter 8. Memory Management

8.1. Reference cycles

Remember that the Triceps memory management uses the reference counting, which does not like the reference cycles, as
has been mentioned in Section 4.3: “Memory management fundamentals’ (p. 20) . The reference cycles cause the objects
to be never freed. It's no big deal if the data structures exist until the program exit anyway but it becomes a memory leak
if they keep being created and deleted dynamically.

The problems come not with the data that goes through the models but with the models themselves. The data gets refer-
ence-counted without any issues. The reference cycles can get formed only between the elements of the models: labels,
tables etc. If you don't need them destroyed until the program exits (or more exactly, until the Perl interpreter instance
exits), there is no problem. The leaks could happen only if the model elements get created and destroyed as the program
runs, such as if you use them to parse and process the short-lived ad-hoc queries.

These leaks are pretty hard to diagnose. There are some packages, like Devel::Cycle, but they won't detect the loops that
involve a reference at C++ level. And when the Perl interpreter exits, it clears up all the variables used, even the ones
involved in theloops, so if you runit under valgrind, valgrind doesn't show any leaks. Thereisapackage Devel::LeakTrace
that should be able to detect all these left-over variables. However | can't tell for sure yet, so far | haven't had enough
patience to build all the dependencies for it.

One possibility isto use the weak references (using the module Scalar::Util). But the problem is that you need to not forget
weakening the references manually. Too much work, too much attention, too easy to forget.

The mechanism used in Tricepsworks by breaking up the reference cycleswhen the data needsto be cleared. The execution
unit keeps track of all its labels, and when it gets destoryed, clears them up, breaking up the cycles. It's also possible to
clear the labelsindividually, by amanual call.

The clearing of alabel clears all the chainings. The chained labels get cleared too in their turn, and eventually the whole
chain clears up. This removes the links in the forward direction, and if any cycles were present, they become open. More
on the details of label clearing in the Section 8.2: “Clearing of the labels’ (p. 78) .

Another potential for reference cyclesis between the execution unit and thelabels. A unit keepsareferenceto all itslabels.
So the labels can not keep a reference to the unit. And they don't. Internally they have a plain C++ pointer to the unit.
However the Perl level may present a problem.

In many cases the labels have a Perl reference to the template object where they belong. And that object islikely to havea
Per| reference to the unit. It's one more opportunity for the reference cycle. This code usually looks like this:

package MyTenpl at e;

sub new # ($class, $unit, $nane, $rowlype, ...)
{

ny $class = shift;

ny $unit = shift;

ny $nanme = shift;

ny $rowlype = shift;

ny $self = {};

$sel f->{unit} = $Sunit;
$sel f->{i nput Label } = $unit->nmakelLabel ($rowType, $name . ".in",
sub { ... }, sub { ... }, $self);

77

bl ess $sel f, $cl ass;
return $sel f;

}

So the unit refers to the label at the C++ level, the label has a $sel f reference to the Perl object that owns it, and the
object's$sel f->{uni t} refersback to the unit. Once the label clearing happens, the link from the unit will disappear
and the cyclewould unroll. But the clearing would not happen by itself because the unit can't get automatically defererenced
and destroyed.

Because of this, the unit provides an explicit way to trigger the clearing:

$uni t - >cl ear Label s();

If you want to get rid of an execution unit with all its components without exiting the whole program, use this call. It will
start the chain reaction of destruction. Of course, don't forget to undefine all the other references in your program to these
objects being destroyed.

Thereisaso away to trigger this chain reaction automatically. It's done with a helper object that is created as follows:

nmy $clearUnit = $unit->nmaked earingTrigger();

When the referenceto $cl ear Uni t gets destroyed, it will call $uni t - >cl ear Label s() and trigger the destruction
of the whole unit. Obviously, don't copy the $cl ear Uni t variable, keep it on one place.

If you put it into a block variable, the unit will get destroyed on exiting the block. If you put it into a global variable in
athread, the unit will get destroyed when the thread exits (though I'm a bit hazy on the Perl memoery management with
threads yet, it might get all cleared by itself without any special tricks too).

8.2. Clearing of the labels

To remind, alabel that executes the Perl code is created with:

$l abel = $unit->nmakelLabel ($rowType, "nane", \&cl ear Sub,
\ &execSub, @rgs);

The function cl ear Sub deals with the destruction.

The clearing of alabel dropsall the referencesto execSub, cl ear Sub and arguments, and clears al the chainings. And
of course the chained labels get cleared too. But before anything else is done, cl ear Sub gets a chance to execute and
clear any application-level data. It gets as its arguments al the arguments from the label constructor, same as exec Sub:

cl ear Sub($l abel , @rgs)
A typical caseisto keep the state of a stateful element in a hash:
package MyTenpl at e;

sub new # ($class, $unit, $nane, $rowlype, ...)
{

ny $class = shift;

ny $unit = shift;

ny $nanme = shift;

ny $rowlype = shift;

ny $self = {};

78 Memory Management

$sel f->{unit} = $unit;
$sel f->{i nput Label } = $unit->nmakelLabel ($rowType, $nane .
\ &l ear, \ &handle, $self);

.in",

bl ess $sel f, $cl ass;
return $sel f;

}

These elements may end up pointing to the other elements. It's fairly common to keep the pointers to the other elements
(especially tables) that provide inputs to this one. In general, these references “up” should be safe because the clearing of
the labels would destroy the references “down” and open the cycles. But the way things get connected in the heat of the
moment, you never know. It's better to be safe than sorry. To be on the safe side, the clearing function can wipe out the
whole state of the element by undefining its hash:

sub clear # (%l abel, $self)

{
ny ($label, $self) = @;
undef %sel f;

}

The whole contents of the hash becomes lost, all the refrences from it disappear. And if you use this approach in every
object, the complete destruction reigns and everything is nicely laid to waste.

Writing these clear methods for each class quickly becomes tedious and easy to forget. Tricepsis a step ahead: it provides
aready function Tri ceps: : cl ear Args() that doesall thisdestruction. It can undefine the contents of various things
passed as its arguments, and then al so undefines these arguments themselves. Just reuse it:

$sel f->{i nput Label } = $unit->makelLabel ($rowType, $name . ".in",
\ &Triceps::clearArgs, \&andl e, $self);

But that's not all. Tricepsisactually two steps ahead. If thecl ear Sub isspecified asundef , Triceps automatically treats
ittobeTri ceps: : cl ear Args() . Thelast snippet and the following one are equivalent:

$sel f->{i nput Label } = $unit->nmakelLabel ($rowType, $name . ".in",
undef, \&handle, $self);

No need to think, the default will do the right thing for you. Of course, if by some reason you don't want this destruction
to happen, you'd have to override it with an empty function “sub {}”.

8.3. The clearing labels

Some templates don't have their own input labels, instead they just combine and tie together a few internal objects, and
use the input labels of some of these internal objects as their inputs. Among the templates included with Triceps, JoinTwo
is one of them, it just combines two LookupJoins. Without an input label, there would be no clearing, and the template
object would never get undefined.

This can be solved by creating an artificial label that isnot connected anywhere and has no code to execute. Itsonly purpose
in life would be to clear the object when told so. To make life easier, rather than abusing makelLabel (), thereisaway
to create the special clearing-only labels:

$l b = $uni t->maked eari ngLabel ("nane", @rgs);
The arguments would be the references to the objects that need clearing, usually $sel f . For a concrete usage example,
here is how JoinTwo usesiit:

$sel f->{cl eari ngLabel} = $sel f->{unit}->maked eari nglLabel (

The clearing labels 79

$sel f->{nane} . ".clear", $self);

Since this call “should never fail”, on any errors it will confess. There is no need to check the result. The result can be
saved in avariable or can be simply ignored. If you throw away the result, you won't be able to access that |abel from the
Perl code but it won't be lost: it will be still referenced from the unit, until the unit gets cleared.

Note how the clearing label doesn't havearow type. Inreality every label doeshow arow type, just it would besilly to abuse
the random row typesto create the clearing-only labels. Because of this, the clearing label s are created with aspecial empty
row typethat has no fieldsinit. If you ever want to use thisrow type for any other purposes, you can get it with the method

$rt = $unit - >get Enpt yRowType();

Under the hood, the clearing label is the same as a normal label with Perl code, only with the specia default values used
for its construction. The normal Perl label methods would work on it like on anormal label.

80 Memory Management

Chapter 9. Tables
9.1. Hello, tables!

The tables are the fundamental elements of state-keeping in Triceps. Let's start with a basic example:

ny $hwunit = Triceps::Unit->new("hwnit");
ny $rtCount = Triceps:: RowType- >new
address => "string",

count => "int32",

)

ny $ttCount = Triceps:: Tabl eType- >new($rt Count)
- >addSubl ndex(" byAddr ess",
Triceps:: | ndexType- >newHashed(key => ["address"])

)
$ttCount->initialize();
ny $t Count = $hwunit->nmakeTabl e($tt Count, "t Count");

whi | e(<STDI N>) {
chonp;
ny @ata = split(/\W/);

the common part: find if there already is a count for this address
ny $rhFound = $t Count ->fi ndBy(
address => $dat a[1]
)
ny $cnt = 0;
if (!$rhFound->isNull()) {
$cnt = $rhFound- >get Row() - >get ("count ") ;
}

if ($data[0] =~ /~hello$/i) {
ny $new = $rt Count - >makeRowHash(
address => $data[1],
count => $cnt +1,
)
$t Count - >i nsert ($new) ;
} elsif ($data[0] =~ /~count$/i) ({
print("Received '", $data[1], "' ", $cnt + 0, " tines\n");
} else {
print("Unknown conmand ' $data[0]'\n");
}

}

What happens here? The main loop reads the lines from standard input, splits into words and uses the first word as a
command and the second word as a key. Note that it's not CSV format, it's words with the non-alphanumeric characters
separating thewords. “Hello, table!”, “helloworld”, “count world” are examples of thevalid inputs. For someting different,

the commands are compared with their case ignored (but the case matters for the key).

The example counts, how many times each key has been hel | 0-ed, and prints this count back on the command count .

Hereisasample, with theinput lines printed in bold:

Hel | o, table!
Hel | o, worl d!
Hel | o, table!

81

count world
Received "world' 1 tines
Count table
Received 'table' 2 tines

In this example the table is read and modified using the direct procedural calls. Asyou can see, there isn't even any need
for unit scheduling and such. There is a scheduler-based interface to the tables too, it will be shown soon. But in many
cases the direct access is easier. Indeed, this particular example could have been implemented with the plain Perl hashes.
Nothing wrong with that either. Well, the Perl tables provide many more intersting ways of indexing the data. But if you
don't need them, they don't matter. And at some future point the tables will be supporting the on-disk persistence, but no
reason to bother much about that now: things are likely to change a dozen times yet before that happens. Feel free to just
use the Perl data structuresif they make the code easier.

A table is created through atable type. This allows to stamp out duplicate tables of the same type, which can get handy
when the multithreading will be added. A tableislocal to athread. A table type can be shared between threads. To look
up something in another thread's table, you'd either have to ask it through a request-reply protocol or to keep alocal copy
of the table. Such a copy can be easily done by creating a copy table from the same type.

In reality, right now all the business with table types separated from the tables is more pain than gain. It not only adds
extra steps but also makes difficult to define a template that acts on a table by defining extra features on it. Something
will be done about it, | have afew ideas.

The table type getsfirst created and configured, then initialized. After atable typeisinitialized, it can not be changed any
more. That'sthe point of theinitialization call: tell thetypethat al the configuration has been done, and it can go immutable
now. Fundamentally, configuting a table type just makes it collect bits and pieces. Nothing but the most gross errors can
be detected at that point. At initialization time everything comes together and everything gets checked for consistency. A
table type must be fully initialized in one thread before it can be shared with other threads. The historic reason for this API
isthat it mirrors the C++ API, which has turned out not to look that good in Perl. It's another candidate for a change.

A table type getsthe row type and at least one index. Hereit's ahashed index by the key field addr ess. "Hashed" means
that you can look up the rows by the key value but there are no promises about any specific row order. And the hashing is
used to make the key comparisons more efficient. The key of a hashed index may consist of multiple fields.

The table is then created from the table type, and given a name.

The rows can then be inserted into the table (and removed too, not shown in this example yet). The default behavior of the
hashed index isto replace the old row if a new row with the same key isinserted.

The search in the table is done by the method f i ndBy() with the key fields of the index. Which returns a RowHandle
object. A RowHandleis essentially an iterator in the table. Even if the row is not found, a RowHandle will be still returned
but it will be NULL, which is checked for by $r h- >i sNul | () .

No matter which command will be used, it's always useful to look up the previous row for the key: its contents would be
either printed or provide the previous value for the increase. So the model does it first and gets the count from it. If it's
not found, then the count is set to 0.

Then it looks at the command and does what it's been told. Updating the count amounts to creating a new row with the
new values and inserting it into the table. It replaces the previous one.

Thisisjust thetip of theiceberg. The tablesin Triceps have alot more features.

9.2. Tables and labels

A table does not have to be operated in a procedural way. It can be plugged into the the scheduler machinery. Whenever
atableiscreated, three |abels are created with it.

82 Tables

e Theinput label is for sending the modification rowops to the table. The table provides the handler for it that applies
the incoming rowops to the table.

e The output label propagates the modifications done to the table. It is a dummy label, and does nothing by itsdlf. It's
there for chaining the other labels to it. The output rowop comes quite handy to propagate the table's modifications to
therest of the state.

e The pre-modification label is also a dummy label, for chaining other labels to it. It sends the rowops right before they
are applied to the table. This comes very handy for the elements that need to act depending on the previous state of the
table, such as joins. The pre-modification label doesn't ssimply mirror the input label. The rows received on the input
|abel may trigger the automatic changesto the table, such asan old row being deleted when anew row with the same key
isinserted. All these modifications, be they automatic or explicit, will be reported to the pre-modification label. Since
the pre-modification label isused relatively rarely, it contains aspecial optimization: if thereisno label chained toit, no
rowop will be sent to it in the first place. Don't be surprised if you enable the tracing and don't see it in the trace.

Again, the rowops coming through these labels aren't necessarily the same. If a DELETE rowop comes to the input label,
referring to arow that isnot in the table, it will not propagate anywhere. If an INSERT rowop comesin and causes another
row to be replaced, the replaced row will be sent to the pre-modification and output labels as a DELETE rowop first.

Anf of course the table may be modified through the procedural interface. These modifications also produce rowops on
the pre-modification and output labels.

The labels of the table have names. They are produced by adding suffixes to the table name. They are "tablename.in”,
"tablename.pre” and "tablename.out".

In the “no bundling” spirit, a rowop is sent to the pre-modification label right before it's applied to the table, and to the
output label right after it's applied. If the labels executed from there need to read the table, they can, and will find the table
in the exact state with no intervening modifications. However, they can't modify the table neither directly nor by calling
its input label. When these labels are called, the table is in the middle of a modification and it can't accept another one.
Such attempts are treated as recursive modifications, forbidden, and the program will die on them. If you need to modify
the table, use schedul e() or | oopAt () to have the next modification done later. However there are no guarantees
about other modifications getting done in between. When the looped rowop executes, it might need to check the state of
the table again and decide if its operation still makes sense.

So, let's make a version of “Hello, table” example that passes the modification regquests as rowops through the labels. It
will print the information about the updates to the table as they happen, so there is no more use having a separate command
for that. But for another demonstration let's add a command that would clear the counter of hellos. Hereisits code:

ny $hwunit = Triceps:: Unit->new("hwnit");
ny $rtCount = Triceps:: RowType- >new(
address => "string",
count => "int32",

)

ny $ttCount = Triceps:: Tabl eType- >new($rt Count)
- >addSubl ndex(" byAddr ess",
Triceps:: | ndexType- >newHashed(key => ["address"])

.)

étt@unt->i nitialize();

nmy $t Count = $hwunit->makeTabl e($tt Count, "tCount");

ny $I bPri nt Count = $hwunit - >makeLabel ($t Count - >get RowType(),

"1 bPrint Count", undef, sub { # (label, rowop)
ny ($l abel, $rowop) = @;

Tables and labels 83

ny $row = $rowop->get Row() ;
print (&Triceps::opcodeString($rowop->get Opcode), " "'",

$r ow >get (" address"), , count ", $row >get("count"), "\n");

P
$t Count - >get Qut put Label () - >chai n($l bPri nt Count);

the updates will be sent here, for the tables to process
ny $l bTabl el nput = $t Count - >get | nput Label () ;

whi | e(<STDI N>) {
chonp;
ny @ata = split(/\W/);

the common part: find if there already is a count for this address
ny $rhFound = $t Count - >fi ndBy(
address => $dat a[1]
)
ny $cnt = 0;
if (!$rhFound->isNull()) {
$cnt = $rhFound- >get Row() - >get ("count");
}

if ($data[0] =~ /"hello$/i) {
$hwuni t - >makeHashSchedul e($! bTabl el nput, "OP_I NSERT",
address => $data[1],
count => $cnt +1,
)
} elsif ($data[0] =~ /~clear$/i) {
$hwuni t - >makeHashSchedul e($I bTabl el nput, "OP_DELETE",
address => $dat a[1]
)
} else {
print("Unknown conmand ' $data[0]'\n");
}

$hwuni t - >dr ai nFranme() ;

}

Thetable creation is the same as last time. The row finding in the table is also the same.

The printing of the modifications to the table is done with $I bPr i nt Count , which is connected to the table's output
label. It prints the opcode, the address of the greeting, and the count of greetings. It will show us what is happening to
the table as soon as it happens. An unit trace could be used instead but a custom printout contains less noise. The pre-
modification label is of no interest here, so it's not used.

The references to the labels of atable are gotten with:

$l abel = $t abl e->get | nput Label ();
$l abel = $t abl e- >get PreLabel ();
$l abel = $t abl e- >get Qut put Label ();

The deletion does not require an exact row to be sent in. All it needs is a row with the keys for deletion, the rest of the
fieldsinit areignored. So the “clear” command puts only the key field in it.

Here is an example of input (in bold) and output:

Hel | o, tabl e!
OP_I NSERT 'table', count 1
Hel | o, worl d!
OP_I NSERT 'world', count 1
Hel | o, tabl e!

OP_DELETE 'table', count 1

84 Tables

OP_I NSERT 'table', count 2
clear, table
OP_DELETE 'table', count 2
Hel | o, tabl e!
OP_I NSERT 'table', count 1

An interesting thing happens after the second “Hello, table!”: the code send only an OP_I NSERT but the output shows an
OP_DELETE and OP_| NSERT. The OP_DELETE for the old row gets automatically generated when arow with repeated
key isinserted. Now, depending on what you want, just sending in the first place the consequent inserts of rows with the
same keys, and relying on the table's internal consistency to turn them into updates, might be a good thing or not. Overall
it's adirty way to write but sometimes it comes convenient. The clean way is to send the explicit deletes first. When the
data goes through the table, it gets automatically cleaned. The subscribers to the table's output and pre-modification labels
get the clean and consistent picture: arow never gets simply replaced, they always see an OP_DELETE first and only then
an OP_I| NSERT.

9.3. Basic iteration through the table

Let's add a dump of the table contents to the "Hello, table" example, either version of it. For that, the code needs to go
through every record in the table:

el sif ($data[0] =~ /~dunp$/i) {
for (ny $rhi = $tCount->begin(); !$rhi->isNull(); $rhi = $rhi->next()) {
print($rhi->getRow>printP(), "\n");
}
}

As you can see, the row handle works kind of like an STL iterator. Only the end of iteration is detected by receiving a
NULL row handle. Calling next () onaNULL row handleis OK but it would just return another NULL handle. And
there is no decrementing the iterator, you can only go forward with next () . The backwards iteration is in the plans but
not implemented yet.

An example of this fragment's output would be:

Hel | o, table!

Hel | o, worl d!

Hel | o, table!

count world

Received '"world" 1 tines

Count table
Received 'table' 2 tines
dunp

address="wor | d" coun

t=
address="t abl " count=

wqn
" on

The order of the rows in the printout is the same as the order of rows in the table's index. Which is no particular order,
sinceit's a hashed index. Aslong as you stay with the same 64-bit AM D64 architecture (with L SB-first byte order), it will
stay the same on consecutive runs. But switching to a 32-bit machine or to an MSB-first byte order (such as a SPARC, if
you can still find one) will change the hash calculation, and with it the resulting row order. There are the ordered indexes
aswell, they will be described later.

9.4. Deleting a row

Deleting a row from a table through the input label is smple: send a rowop with OP_DELETE, it will find the row
with the matching key and delete it, as was shown above. In the procedural way the same can be done with the method
del et eRow() . The added row deletion code for the main loop of “Hello, table” (either version, but particularly relevant
for the one from Section 9.1: “Hello, tables!” (p. 81)) is:

Basic iteration through the table 85

elsif ($data[0] =~ /"delete$/i) {
ny $res = $t Count - >del et eRow($rt Count - >makeRowHash(
address => $data[1],

). o

print("Address , $data[1l], "' is not found\n") unless $res;

}

The result allows to differentiate between the situations when the row was found and deleted and the row was not found.
On any error the call confesses.

However we aready find the row handle in advance in $r hFound. For this case a more efficient form is available, and
it can be added to the example as:

elsif ($data[0] =~ /~renove$/i) {
if (!$rhFound->i sNull()) {
$t Count - >r enove($r hFound) ;
} else {
print("Address '", $data[1], "' is not found\n");
}

}

It removes a specific row handle from the table. In whichever way you find it, you can remove it. An attempt to remove
aNULL handle would be an error and cause a confession.

The reason why r enove() is more efficient than del et eRow() isthat del et eRow() amounts to finding the row
handle by key and then removing it. And the OP_DEL ETE rowop sent to the input label callsdel et eRow() .

del et eRow() never deletes more than one row, even if multiple rows match (yes, the indexes don't have to be unique).
There isn't any method to delete multiple rows at once. Every row has to be deleted by itself. As an example, here is the
implementation of the command “clear” for “Hello, table” that clears all the table contents by iterating through it:

elsif ($data[0] =~ /"clear$/i) {
nmy $rhi = $t Count - >begi n();
while (!'$rhi->isNull()) {
ny $rhnext = $rhi->next();
$t Count - >r enove($rhi);
$rhi = $rhnext;
}
}

After ahandleisremoved from the table, it continuesto exist, aslong as there are referencesto it. It could even beinserted
back into the table. However until (and unless) it'sinserted back, it can not be used for iteration any more. Calling next ()
on a handle that is not in the table would just return a NULL handle. So the next row has to be found before removing
the current one.

9.5. A closer look at the RowHandles

A few uses of the RowHandles have been shown by now. So, what is a RowHandle? As Captain Obvious would say,
RowHandleis a class (or package, in Perl terms) implementing arow handle.

A row handle keeps a tabl€e's service information (including the index data) for a single data row, including of course a
reference to the row itself. Each row is stored in the table through its handle. The row handle is also an iterator in the
table, and a specia one: it's an iterator for all the tabl€e's indexes at once. For you SQLY people, an iterator is essentially
acursor on an index. For you Java people, an iterator can be used to do more than step sequentially through rows. So far
only the table types with one index have been shown, but in reality multiple indexes are supported, potentially with quite
complicated arrangements. More on the indexes later, for now just keep it in mind. A row handle can be found through

86 Tables

one index and then used to iterate through another one. Or you can iterate through oneindex, find a certain row handle and
continue iterating through another index starting from that handle. If you remember areference on aparticular row handle,
you can always continue iteration from that point later. (unless the row handle gets removed from the table).

A RowHandle always belongs to a particular table, the RowHandles can not be shared nor moved between two tables,
even if the tables are of the same type. Since the tables are single-threaded, obviously the RowHandles may not be shared
between the threads either.

However a RowHandle may exist without being inserted into atable. In this case it still has a spiritual connection to that
table but is not included in the index (the iteration attempts with it would just return “end of the index”), and will be
destroyed as soon as all the references to it disappear.

Theinsertion of arow into atable actually happens in two steps:
1. A RowHandleis created for arow.
2. Thisnew handleisinserted into the table.

Thisis done with the following code:

$rh = $t abl e- >makeRowHandl e($r ow) ;
$t abl e- >i nsert ($rh);

Only it just so happens that to make life easier, the method i nsert () has been made to accept either a row handle or
directly arow. If it finds a row, it makes a handle for it behind the curtains and then proceeds with the insertion of that
handle. Passing arow directly isalso more efficient (if you don't have ahandle already created for it for some other reason)
because the row handle creation then happens entirely in the C++ code, without surfacing into Perl.

A handle can be created for any row of atype matching the table's row type. For awhile it was accepting only equal types
but that was not consistent with what the labels are doing, so I've changed it.

Themethodi nsert () hasareturnvalue. It's often ignored but occasionally comes handy. 1 meansthat the row has been
inserted successfully, and O means that the row has been rejected. On errors it confesses. An attempt to insert a NULL
handle or a handle that is already in the table will cause argjection, not an error. Also the tabl€e's index may reject arow
with duplicate key (though right now this option is not implemented, and the hash index silently replaces the old row with
the new one).

Thereisamethod to find out if arow handleisin the table or not:
$result = $rh->islnTable();
Though it's used mostly for debugging, when some strange things start going on.

The searching for rows in the table by key has been previously shown with the method f i ndBy () . Which happensto be
awrapper over amore general method f i nd() : it constructs arow from its argument fields and then callsf i nd() with
that row as a sample of datato find. The method f i nd() issimilartoi nsert () inthe handling of its arguments: the
“proper” way isto giveit arow handle argument, but the more efficient way isto giveit arow argument, and it will create
the handle for it as needed before performing a search.

Now you might wonder: huh, f i nd() takesarow handle and returns a row handle? What's the point? Why not just use
the first row handle? Well, those are different handles:

» Theargument handleis normally not in thetable. It's created brand new from arow that contains the keys that you want
to find, just for the purpose of searching.

e Thereturned handle is always in the table (of course, unlessit's NULL). It can be further used to extract back the row
data, and/or for iteration.

A closer look at the RowHandles 87

Though nothing really prevents you from searching for a handle that is already in the table. You'll just get back the same
handle, after gratuitously spending some CPU time. (There are exceptionsto this, with the more complex indexes that will
be described |ater).

Why do you need to create new arow handle just for the search? Due to the internal mechanics of the implementation. A
handle stores the helper information for the index. For example, the hash index calculates the hash value of all the row's
key fieldsonce and storesit in therow handle. Despiteit being called ahash index, it really storesthe datain atree, with the
hash value used to speed up the comparisons for the tree order. It's much easier to make both thei nsert () andfi nd()
work with the hash value and row reference stored in the same way in ahandle than to implement them differently. Because
of this, f i nd() usesthe exactly same row handle argument format asi nsert ().

Can you create multiple row handles referring to the same row? Sure, knock yourself out. From the table's perspectiveit's
the same thing as multiple row handlesfor multiple copies of the row with the same valuesin them, only using lessmemory.

There is more to the row handles than has been touched upon yet. It will al be revealed when more of the table features
aredescribed. Theinterna structure of the row handles will be described in the Section 9.10: “Theindex tree” (p. 101) .

9.6. A window is a FIFO

A fairly typical situation in the CEPworld iswhen amodel needsto keep alimited history of events. For asimple example,
let's discuss, how to remember the last two trades per stock symbol. The size of two has been chosen to keep the sample
input and outputs small.

Thisis normally called awindow logic, with asliding window. Y ou can think of it in a mechanical analogy: as the trades
become available, they get printed on a long tape. However the tape is covered with a masking plate. The plate has a
window cut in it that lets you see only the last two trades.

Some CEP systems have the special data structures that implement thislogic, that are called windows. Triceps has afeature
on atable instead that makes a table work as a window. It's not unique in this department: for example Coral8 does the
opposite, calls everything awindow, even if some windows are really tablesin every regard but name.

Here is a Triceps example of keeping the window for the last two trades and iteration over it:

our $uTrades = Triceps::Unit->new "uTrades");
our $rtTrade = Triceps:: RowType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded

)

our $ttWndow = Triceps:: Tabl eType->new $rt Tr ade)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

$ttWndow >initialize();
our $t Wndow = $uTrades- >makeTabl e($tt W ndow, "t W ndow');

renenber the index type by synmbol, for searching on it

our $itSynbol = $ttW ndow >fi ndSubl ndex("bySynbol ");

renenber the FIFO index, for finding the start of the group
our $itlLast2 = $itSynbol ->findSubl ndex("l ast2");

print out the changes to the table as they happen

88 Tables

our $l bW ndowPrint = $uTrades->nakelLabel ($rt Trade, "| bW ndowPrint",
undef, sub { # (label, rowop)
print($_[1]->printP(), "“\n"); # print the change
1)
$t W ndow >get Qut put Label () - >chai n($l bW ndowPri nt) ;

whi | e(<STDI N>) {

chonp;

ny $rTrade = $rtTrade- >makeRowArray(split(/,/));

ny $rhTrade = $t W ndow >nakeRowHandl e($r Tr ade) ;

$t W ndow >i nsert ($rhTr ade) ;

There are two ways to find the first record for this

synmbol . Use one way for the synmbol AAA and the other for the rest.

ny $rhFirst;

if (%rTrade->get("synbol") eq "AAA") {
$rhFirst = $t Wndow >findl dx($i t Synbol, $rTrade);

} else {
$rhTrade is nowin the table but it's the last record
$rhFirst = $rhTrade->first Of Groupl dx($itLast?2);

}
ny $rhEnd = $rhFirst->next G oupl dx($itLast?2);
print("New contents:\n");
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {
print(" ", $rhi->getRowm)->printP(), "\n");
}
}

This example reads the trade records in CSV format, inserts them into the table, and then prints the actual modifications
reported by the table and the new state of the window for this symbol. And hereisasamplelog, with theinput linesin bold:

1, AAA 10, 10
t W ndow. out OP_I NSERT i d="1" synbol =" AAA" price="10" size="10"
New cont ent s:
id="1" synbol =" AAA" price="10" size="10"
2, BBB, 100, 100
t W ndow. out OP_I NSERT i d="2" symnbol ="BBB" price="100" size="100"
New cont ent s:
id="2" synbol ="BBB" price="100" size="100"
3, AAA 20, 20
t W ndow. out OP_I NSERT i d="3" synbol =" AAA" price="20" size="20"
New cont ent s:
id="1" synbol
i d="3" synbol
4, BBB, 200, 200
t W ndow. out OP_I NSERT i d="4" synbol ="BBB" price="200" size="200"
New cont ent s:

"AAA" price="10" size="10"
"AAA" price="20" size="20"

id="2" synbol ="BBB" price="100" size="100"
i d="4" synbol ="BBB" price="200" size="200"
5, AAA, 30, 30

t W ndow. out OP_DELETE id="1" synbol
t W ndow. out OP_I NSERT i d="5" synbol
New cont ent s:
id="3" synbol
i d="5" synbol
6, BBB, 300, 300
t W ndow. out OP_DELETE id="2" synbol
t W ndow. out OP_I NSERT i d="6" synbol
New cont ent s:
i d="4" synbol
i d="6" synbol

="AAA" price="10" size="10"
="AAA" price="30" size="30"
="AAA" price="20" size="20"
="AAA" price="30" size="30"
="BBB" price="100" size="100"
="BBB" price="300" size="300"
price="200" size="200"

=" BBB"
="BBB" price="300" size="300"

A window is a FIFO 89

Y ou can see that the window logic works: at no time is there more than two rows in each group. As more rows are inserted,
the oldest rows get deleted.

Now let'sdig into the code. Thefirst thing to noticeisthat the table type has two indexes (strictly speaking, index types, but
most of the time they can be called indexes without creating a confusion) in it. Unlike your typical database, the indexes
in this example are nested.

Tabl eType
+- 1 ndexType Hash "bySynbol "
+- 1 ndexType Fifo "l ast2"

If you follow the nesting, you can see, that the first call addSubl ndex () adds an index type to the table type, while the
textually second addSubl ndex () adds an index to the previous index.

The same can also be written out in multiple separate calls, with the intermediate results stored in the variables:

$itLast2 = Triceps::|ndexType->newrifo(limt => 2);

$it Synbol = Triceps::|ndexType->newHashed(key => ["synbol"]);
$i t Synbol - >addSubl ndex("| ast 2", $itlLast2);

$tt Wndow = Triceps:: Tabl eType- >new($rt Tr ade) ;

$t t W ndow >addSubl ndex(" bySynbol ", $it Synbol);

I'm not perfectly happy with the way the table types are constructed with the index types right now, since the parenthesis
levels have turned out a bit hard to track. This is another example of following the C++ APl in Perl that didn't work out
too well, and it will change in the future. But for now please bear with it.

The index nesting is kind of intuitively clear, but the details may take some time to get your head wrapped around them.
Y ou can think of it asthe inner index type creating the miniature tables that hold the rows, and then the outer index holding
not individual rows but those miniature tables. So, to find the rows in the table you go through two levels of indexes: first
through the outer index, and then through the inner one. The table takes care of these details and makes them transparent,
unless you want to stop your search at an intermediate level: such as, to find all the transactions with a given symbol, you
need to do a search in the outer index, but then from that point iterate through all rows in the found inner index. For this
you obviously have to tell the table, where do you want to stop in the search.

The outer index is the hash index that we've seen before, the inner index is a FIFO index. A FIFO index doesn't have any
key, it just keeps the rowsin the order they were inserted. Y ou can search in aFIFO index but most of the timeit's not the
best idea: sinceit has no keys, it searcheslinearly through al itsrows until it finds an exact match (or runs out of rows). It's
areasonable last-resort way but it's not fast and in many cases not what you want. This also sends afew ripples through the
row deletion. Remember that the method del et eRow() and sending the OP_DELETE to the table's input label invoke
find(),whichwould cause the linear search on the FIFO indexes. So when you use a FIFO index, it's usually better to
find the row handle you want to deletein some other way and then call r enmove() onit, or use another approach that will
be shown later. Or just keep inserting the rows and never delete them, like this example does.

A FIFO index may contain multiple copies of an exact same row. It doesn't care, it just keeps whatever rows were given
to it in whatever order they were given.

By default a FIFO index just keeps whatever rows come to it. However it may have a few options. Setting the option
i mt limitsthe number of rows stored in the index (not per the whole table but per one of those “miniature tables").
When you try to insert one row too many, the oldest row gets thrown out, and the limit stays unbroken. That's what creates
the window behavior: keep the most recent N rows.

If you look at the sample output, you can see that inserting the rows with ids 1-4 generates only the insert events on the
table. But the rows 5 and 6 start overflowing their FIFO indexes, and cause the oldest row to be automatically deleted
before completing the insert of the new one.

A FIFO index doesn't have to be nested inside a hash index. If you put a FIFO index at the top level, it will control the
whole table. So it would be not two last record per key but two last records inserted in the whole table.

90 Tables

Continuing with the example, the table gets created, and then the index types get extracted back from the table type.
Now, why not just write out the table type creation with intermediate variables as shown above and remember the index
references? At some point in the past this actually would have worked but not any more. It has to do with the way the table
type and its index types are connected. It's occasionally convenient to create one index type and then reuse it in multiple
tabletypes. However for the whole thing to work, the index type must betied to its particul ar table type. Thistying together
happens when the table type is initialized. If you put the same index type into two table types, then when the first table
type is initialized, the index type will get tied to it. The second table type would then fail to initialize because an index
initisalready tied elsewhere. To get around this dilemma, now when you call addSubl ndex() , it doesn't connect the
original index type, instead it makes a copy of it. That copy then gets tied with the table type and later gets returned back
with f i ndSubl ndex() .

The table methods that take an index type argument absolutely require that the index type must be tied to that tabl€'s type.
If you try to pass a seemingly the same index type that has not been tied, or has been tied to a different table type, that
isan error.

One last note on this subject: there is no interdependency between the methodsnmakeTabl e() andf i ndSubl ndex(),
they can be donein either order.

The exampl e output comes from two sources. The running updates on the table's modifications (the lineswith OP_| NSERT
and OP_DELETE) are printed fromthelabel $I bW ndowPr i nt . The new window contentsis printed from the main loop.

The main loop reads the trade records in the simple CSV format without the opcode, and for simplicity inserts directly into
the table with the procedural API, bypassing the scheduler. After the row is inserted, the contents of itsindex group (that
“miniaturetable”) gets printed. Theinsertion could as well have been done with passing directly the row reference, without
explicitly creating a handle. But that handle will be used to demonstrate an interesting point.

To print the contents of an index group, we need to find its boundaries. In Triceps these boundaries are expressed as the
first row handle of the group, and as the row handle right after the group. There is an internal logic to that, and it will be
explained later, but for now just take it on faith.

With the information we have, there are two ways to find the first row of the group:

» With the table's method f i ndl dx() . It's very much like f i nd() , only it has an extra argument of a specific index
type. If the index type given has no further nesting in it, f i ndl dx() works exactly likefi nd() . Infact, fi nd()
is exactly such a special case of fi ndl dx() with an automatically chosen index type. If you use an index type with
further nesting under it, f i ndl dx() will return the handle of the first row in the group under it (or the usual NULL
row handle if not found).

« If we create the row handle explicitly before inserting it into the table, as was done in the example, that will be the
exact row handle inserted into the table. Not a copy or anything but this particular row handle. After arow handle gets
inserted into the table, it knows its position in the indexes. It knows, in which group it is. And we still have areference
to it. So then we can use this knowledge to navigate within the group, jump to the first row handle in the group with
firstOf Goupl dx().Italsotakesanindex type but in this caseit'sthe type that controls the group, the FIFO index
in out case.

The example shows both ways. As a demonstration, it uses the first way if the symbol is“AAA” and the second way for
all the other symbols.

The end boundary isfound by calling next G- oupl dx() onthefirst row's handle. The handle of the newly inserted row
could have also been used for next G oupl dx () , or any other handlein the group. For any handle belonging to the same
group, theresult is exactly the same.

Andfinally, after theiteration boundaries have been found, theiteration on the group can run. The end condition comparison
is done with sane() , to compare the row handle references and not just their Perl-level wrappers. The stepping is done
with next | dx() , withisexactly like next () but according to a particular index, the FIFO one. This has actually been

A window is a FIFO 91

done purely to show off this method. In this particular case the result produced by next (), next 1 dx() on the FIFO
index type and next | dx() on the outer hash index type is exactly the same. We'll come to the reasons of that yet.

Looking forward, as you iterate through the group, you could do some manual aggregation along the way. For example,
find the average price of the last two trades, and then do something useful with it.

There isaso a piece of information that you can find without iteration: the size of the group.
$si ze = $tabl e- >groupSi zel dx($i dxType, $row or_rh);

This information is important for the joins, and iterating every time through the group is inefficient if all you want to get
is the group size. Since when you need this data you usually have the row and not the row handle, this operation accepts
either and implicitly performsaf i ndl dx() ontherow to find the row handle. Moreover, even if it receives the argument
of arow handle that is not in the table, it will also automatically perform af i ndl dx() on it (though calling it for arow
handle in the table is more efficient because the group would not need to be looked up first).

If there is no such group in the table, the result will be O.

The $i dxType argument is the non-leaf parent index of the group. (Using aleaf index typeis not an error but it always
returns O, because there are no groups under it). It's basically the same index type as you would use in f i ndl dx() to
find the first row of thegroup orinfi r st Of G oupl dx() or next Groupl dx() to find the boundaries of thr group.
Remember, a non-leaf index type defines the groups, and the nested index types under it define the order in those groups
(and possibly further break them down into sub-groups).

It'sabit confusing, so let's recap with another example. If you have a table type defined as:

our $ttPosition = Triceps:: Tabl eType->new $rt Position)
- >addSubl ndex (" pri mary",
Triceps:: | ndexType- >newHashed(key => ["date", "custoner", "synbol"])

- >addSubl ndex("currencyLookup", # for joining with currency conversion
Triceps:: | ndexType- >newHashed(key => ["date", "currency"])
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newrifo())

)
- >addSubl ndex("byDate", # for cleaning by date

Triceps:: Sinpl eOrder edl ndex- >new(date => "ASC")

- >addSubl ndex(" groupi ng", Triceps::|ndexType->newrifo())
)

1

thenit would make sensetocal gr oupSi zel dx() ,fi rst OF Groupl dx() andnext Gr oupl dx() withtheindexes
“currencyLookup” or “byDate” but not with “primary”, “ currencyL ookup/grouping” nor “byDate/grouping”. Y ou can call
findl dx() with any index, but for “currencyLookup” or “byDate” it would return the first row of the group while
for “primary”, “currencyL ookup/grouping” or “byDate/grouping” it would return the only matching row. On the other
hand, for iteration in a group, it makes sense to call next |1 dx() only on “primary”, “currencyL ookup/grouping” or
“byDate/grouping”. Calling next | dx() on the non-leaf index typesis not an error but it would in effect resolve to the

same thing as using their first leaf sub-indexes.

9.7. Secondary indexes

Thelast example dealt only with the row inserts, because it could not handle the del etions that well. What if the trades may
get cancelled and have to be removed from the table? There is a solution to this problem: add one more index. Only this
time not nested but in parallel. The indexes in the table type become tree-formed:

Tabl eType

+- I ndexType Hash "byld" (id)

+- I ndexType Hash "bySynbol " (synbol)
+- 1 ndexType Fifo "l ast2"

92 Tables

It'svery much like the common relational databases where you can define multiple indexes on the same table. Both indexes
byl d and by Synbol (together with its nested sub-index) refer to the same set of rows stored in the table. Only byl d
allowsto easily find the records by the uniqueid, while by Synbol isresponsible for keeping then grouped by the symboal,
in FIFO order. It could be said that by d isthe primary index (since it has a unique key) and by Synbol isasecondary
one (since it does the grouping) but from the Triceps'es standpoint they are pretty much equal and parallel to each other.

Toillustrate the point, hereisamodified version of the previous example. Not only doesit manage the deletes but also com-
putes the average price of the collected transactions as it iterates through the group, thus performing a manual aggregation.

our $uTrades = Triceps::Unit->new "uTrades");
our $rtTrade = Triceps:: RowType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded

)

our $ttWndow = Triceps:: Tabl eType->new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

$ttWndow >initialize();
our $t Wndow = $uTrades- >makeTabl e($tt W ndow, "t W ndow') ;

renenber the index type by synmbol, for searching on it

our $itSynbol = $ttW ndow >fi ndSubl ndex("bySynbol ");

renenber the FIFO index, for finding the start of the group
our $itlLast2 = $itSynbol ->findSubl ndex("l ast2");

renenber, which was the last row nodified
our $rLast Mod;
our $l bRenenber Last Mod = $uTr ades- >nakelLabel ($rt Trade, "I bRenenber Last Mbd",
undef, sub { # (label, rowop)
$rLastMod = $_[1] ->get Row() ;
1)
$t W ndow >get Qut put Label () - >chai n($l bRemenber Last Mod) ;

Print the average price of the synbol in the last nodified row
sub printAverage # (row
{
return unl ess defined $rLast Mod;
ny $rhFirst = $t W ndow >findl dx($itSynbol, $rlLastMd);
ny $rhEnd = $rhFirst->next G oupl dx($itLast?2);
print("Contents:\n");
ny $avg;
ny ($sum $count);
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {
print(" ", $rhi->getRowm)->printP(), "\n");
$count ++;
$sum += $r hi - >get Row() - >get ("pri ce");

}
if ($count) {
$avg = $suni $count ;

Secondary indexes 93

}
print("Average price: ", (defined $avg? $avg: "Undefined"), "\n");
}

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/);
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
&pri nt Aver age();
undef $rlLastMd; # clear for the next iteration
$uTrades->drai nFrane(); # just in case, for conpleteness

}
And an example of its work, with the input lines shown in bold:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
Aver age price: 10
OP_I NSERT, 2, BBB, 100, 100
Cont ent s:
id="2" synbol ="BBB" price="100" size="100"
Aver age price: 100
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:
id="1" synbol ="AAA" price="10" size="10"
i d="3" synbol ="AAA" price="20" size="20"
Aver age price: 15
OP_I NSERT, 4, BBB, 200, 200
Cont ent s:
id="2" synbol ="BBB" price="100" size="100"
i d="4" synbol ="BBB" price="200" size="200"
Average price: 150
OP_I NSERT, 5, AAA, 30, 30
Cont ent s:
i d="3" synbol ="AAA" price="20" size="20"
i d="5" synbol =" AAA" price="30" size="30"
Aver age price: 25
OP_I NSERT, 6, BBB, 300, 300
Cont ent s:
i d="4" synbol ="BBB" price="200" size="200"
i d="6" synbol ="BBB" price="300" size="300"
Aver age price: 250
OP_DELETE, 3
Cont ent s:
i d="5" synbol =" AAA" price="30" size="30"
Aver age price: 30
OP_DELETE, 5
Cont ent s:
Aver age price: Undefined

Theinput has changed: now an extra column is prepended to it, containing the opcode for the row. The updatesto the table
are not printed any more, but the calculated average price is printed after the new contents of the group.

In the code, the first obvious addition is the extraindex in the table type. The label that used to print the updates is gone,
and replaced with another one, that remembers the last modified row in aglobal variable.

That last modified row isthen used in thefunction pr i nt Aver age() tofind the group for iteration. Why? Could not we
just remember the symbol from theinput data? Not always. Asyou can see from the last two input rowswith OP_DELETE,
thetrade id isthe only field required to find and delete arow using the index by d. So these trade cancellation rows take
a shortcut and only provide the trade id, not the rest of the fields. If we try to remember the symbol fields from them,

94 Tables

we'd remember an undef . Can we just look up the row by id after the incoming rowop has been processed? Not after the
deletion. If we try to find the symbol by looking up the row after the deletion, we will find nothing, because the row will
already be deleted. We could look up the row in the table before the del etion, and remember it, and afterwards do the look-
up of the group by it. But since on deletion the row with will come to the tabl€'s output label anyway, we can just ride the
wave and remember it instead of doing the manual look-up. And this also spares the need of creating arow with the last
symbol for searching: we get aready pre-made row with the right symboal in it.

Note that in this example, unlike the previous one, there are no two ways of finding the group any more: after deletion
the row handle will not be in the table any more, and could not be used to jump directly to the beginning of its group.
fi ndl dx() hasto beused to find the group.

By thetimepri nt Aver age() executes, it could happen that all the rows with that symbol will be gone, and the group
will disappear. This situation is handled nicely in an automatic way: fi ndl dx() will return a NULL row handle, for
which then next Gr oupl dx() will alsoreturnaNULL row handle. The for-loop will immediately satisfy the condition
of $r hi - >same($r hEnd) , it will make no iterations, the $count and $avg will be left undefined. In result no rows
will be printed and the average value will be printed as “Undefined”, as you can see in the reaction to the last input row
in the sample output.

The main loop becomes reduced to reading the input, splitting the line, separating the opcode, calling the table'sinput [abel,
and printing the average. The auto-conversion from the opcode name is used when constructing the rowop. Normally it's
not a good practice, since the program will dieif it finds a bad rowop in the input, but good enough for a small example.
Thedirect use of $uTr ades- >cal | () guaranteesthat by the timeit returns, the last modified row will be remembered
in$r Last Mod, availablefor pri nt Aver age() touse.

After the averageis calculated, $r Last Mod isreset to prevent it from accidentally affecting the next row. If the next row
isan attempt to delete atrade id that is not in the table any more, the DEL TE operation will have no effect on thetable, and
nothing will be sent from the table's output label. $r Last Mod will stay undefined, and pri nt Aver age() will check
it and immediately return. An attempt to passan undef argumenttofi ndl dx() would be an error.

The final $uTr ades- >dr ai nFrane() is there purely for completeness. In this case we know that nothing will be
scheduled by the labels downstream from the table, and there will be nothing to drain.

Now, an interesting question is: how does the table know, that to delete a row, it has to find it using the field i d? Or,
since the deletion internally uses f i nd() , the more precise question is: how does f i nd() know that it has to use the
index byl d? It doesn't use any magic. It simply goes by the first index defined in the table. That's why the index byl d
has been very carefully placed before by Synbol . The same principle appliesto all the other functionslike next () , that
use an index but don't receive one as an argument: the first index is always the default index. There is a bit more detail
toit, but that's the rough principle.

9.8. Sorted index

The hashed index provides a way to store rows indexed by a key. It is fast but it has a price to pay for that speed: when
iterating through it, the records come in an unpredictable (though repeatabl e, within a particular machine architecture) order
determined by the hash function. If the order doesn't matter, that's fine. But often the order does matter, and is desirable
even at the tradeoff of the reduced performance.

The sorted index provides a solution for this problem. It is created with:

$it = Triceps::|ndexType->newPer| Sort ed($sort Nane,
$i ni t Func, $conpareFunc, @rgs);

The“Perl” in “newPerlSorted” refersto the fact that the sorting order is specified as a Perl comparison function.

$sor t Nane isjust asymbolic name for printouts. It'sused whenyou call $i t - >pri nt () (directly or asarecursivecall
from thetabletype print) to let you know what kind of index typeit is, sinceit can't print the compiled comparison function.
It is also used in the error messages if something dies inside the comparison function: the comparison is executed from
deep inside the C++ code, and by that timethe $sor t Nane isthe only way to identify the source of the problems. It's not

Sorted index 95

the same name as used to connect the index type into the table type hierarchy with addSubl ndex() . Asusual, an index
type may be reused in multiple hierarchies, with different names, but in al cases it will also keep the same $sor t Nane.
This may be easier to show with an example:

$rtl = Triceps:: Rowlype- >new
a => "int32",
b => "string",

)
$itl = Triceps::IndexType->newPer| Sorted("basic", undef, \&conpBasic);

$ttl = Triceps:: Tabl eType->new $rt 1)
->addSubl ndex("primary", $itl)

$tt2 = Triceps:: Tabl eType->new $rt 1)
->addSubl ndex("first", $itl)

print $ttl->print(), "\n";
print $tt2->print(), "\n";

The print callsin it will produce:

table (

row {
int32 a,
string b,

}
) 1

i
}
table (

row {

int32 a,
string b,

ndex Per| Sortedl ndex(basic) prinary,

}
) 1

I
}
Both the name of the index type in the table type and the name of the sorted index type are printed, but in different spots.

ndex Perl Sortedl ndex(basic) first,

The$i ni t Func and/or $conpar eFunc function references (or, as usual, they may be specified as source code strings)
specify the sorting order. One of them may be left undefined but not both. @r gs are the optional arguments that will
be passed to both functions.

The easiest but |east flexible way isto just use the $conpar eFunc. It gets two Rows (not RowHandles!) as arguments,
plus whatever is specified in @r gs. It returns the usual Perl-style “<=>" result. For example:

sub compBasic # ($rowl, $row2)

{
return $_[0]->get("a") <=> $_[1]->get("a");
}

Don't forget to use “<=>" for the numbers and “cmp” for the strings. The typical Perl idiom for sorting by more than one
field isto connect them by “||".

Or, if we want to specify the field names as arguments, we could define a sort function that sorts first by a numeric field
in ascending order, then by a string field in descending order:

sub conmpAscDesc # ($rowl, $row2, $nunfFl dAsc, $strFl dDesc)

96 Tables

{
ny ($rowl, $row2, $nunf, $strf) = @;
return $rowl->get ($nunf) <=> $row2->get ($nunf)
|| $row2->get($strf) cnp $rowl->get($strf); # backwards for descendi ng

}

ny $sit = Triceps::|ndexType->newPerl| Sorted("by_a_b", undef,
\ &onpAscDesc, "a", "b");

This assumes that the row type will have a numeric field “a’ and a string field “b”. If it doesn't then this will not be
discovered until you create a table and try to insert some rows into it, which will finally call the comparison function. At
which point the attempt to get anon-existing field will confess, this error will be caught by the table and set the sticky error
in it. The insert operation will confess with this error, and any future operations on the table will also confess with this
error (thisisthe meaning of “sticky”), the table will become unusable.

The $i ni t Func provides away to do that check and more up front. It is called at the table type initialization time. By
this time al this extra information is known, and it gets the references to the table type, index type (itself, but with the
class stripped back to Triceps::IndexType), row type, and whatever extra arguments that were passed. It can do all the
checks once.

Theinit function'sreturn value iskind of backwardsto everything else: on successit returnsundef , on error it returnsthe
error message. It could die too, but simply returning an error message is somewhat nicer. The returned error messages may
contain multiple lines separated by “\n”, so it should try to collect all the error information it can.

Theinit function that would check the arguments for the last example can be defined as:

sub initNuntr # ($tabt, $idxt, $row, @rgs)

{
ny ($tabt, $idxt, $rowt, @rgs) = @;
my %ef = $rowt->getdef(); # the field definition
ny $errors; # collect as nany errors as possible
ny $t;
if ($#args !'=1) {
$errors .= "Received " . ($#args + 1) . " argunents, nust be 2.\n"
} else {
$t = $def {Pargs[0]};
if ($t '~ /int32%]int64$|float64$/) {
$errors .= "Field '" . $args[0] . "' is not of nuneric type.\n"
}
$t = $def {Pargs[1]};
if ($t '~ /string$luint8/) {
$errors .= "Field '" . $args[1] . "' is not of string type.\n"
}
}
if (defined $errors) {
help with diagnostics, append the row type to the error listing
$errors .= "the row type is:\n";
$errors .= $rowm->print();
}
return $errors;
}

ny $sit = Triceps::|ndexType->newPerl| Sorted("by_a b", \& nitNunStr
\ &onpAscDesc, "a", "b");

Theinit function can do even better: it can create and set the comparison function. It's done with:

$i dxt - >set Conpar at or ($conpar eFunc) ;

Sorted index 97

When theinit function sets the comparator, the compare function argument innewPer | Sor t ed() can beleft undefined,
because set Conpar at or () would override it anyway. But one way or the other, the compare function must be set, or
the index type initialization and with it the table type initialization will fail.

By the way, the sorted index type init function is not of the same kind as the aggregator type init function. The aggregator
type could use an init function of this kind too, but at the time it looked like too much extra complexity. It probably will
be added in the future. But more about aggregators later.

A fancier example of the init function will be shown in the next section.

Internally the implementation of the sorted index shares much with the hashed index. They both are implemented as trees
but they compare the rows in different ways. The hashed index is aimed for speed, the sorted index for flexibility. The
common implementation means that they share certain traits. Both kinds have the unique keys, there can not be two rows
with the same key in an index of either kind. Both kinds allow to nest other indexesin them.

The handling of the fatal errors (asin di e()) in the initialization and especially comparison functions is an interesting
subject. The errors propagate properly through the table, and the table operations confess with the Perl handler's error
message. But since an error in the comparison function means that things are going very, very wrong, after that the table
becomes inoperative and will die on all the subsequent operations as well. Y ou need to be very careful in writing these
functions.

9.9. Ordered index

To specify the sorting order in a more SQL-like fashion, Triceps has the class SimpleOrderedindex. It's implemented
entirely in Perl, on top of the sorted index. Besides being useful by itself, it shows off two concepts: the initialization
function of the sorted index, and the template with code generation on the fly.

First, how to create an ordered index:
$it = Triceps::SinpleOderedl ndex->new $fi el dName => $order, ...);

Theargumentsarethekey fields. $or der isoneof " ASC" for ascendingand" DESC' for descending. Hereisan example
of atable with thisindex:

ny $tabType = Triceps:: Tabl eType- >new($r owType)
- >addSubl ndex("sorted",
Triceps:: Si npl eOr der edl ndex- >new(
a => "ASC',
b => "DESC',
)
);

When it gets translated into a sorted index, the comparison function gets generated automatically. It's smart enough to
generate the string comparisons for the st r i ng and ui nt 8 fields, and the numeric comparisons for the numeric fields.
It's not smart enough to do the local e-specific comparisons for the strings and locale-agnostic for the ui nt 8, it just uses
whatever you have set up in cnp for both. It treats the NULL field values as numeric O or empty strings. It doesn't handle
the array fields at all but can at least detect such attempts and flag them as errors.

A weird artifact of the boundary between C++ and Perl is that when you get the index type back from the table type like
$sortldx = $tabType->fi ndSubl ndex("sorted");

the reference stored in $sor t | dx will be of the base type Triceps::IndexType. That's because the C++ internals of the
TableType object know nothing about any derived Perl types. But it's no big deal, since there are no other useful methods
for SimpleOrderedindex anyway. For the future, | have an idea of aworkaround, but it hasto wait for the future.

If youcal $sort | dx- >pri nt (), itwill giveyou anideaof how it was constructed:

98 Tables

Per | Sort edl ndex(Si npl eOrder a ASC, b DESC,)

The contents of the parenthesis is a sort name from the sorted index'es standpoint. It's an arbitrary string. But when the

ordered index prepares this string to pass to the sorted index, it puts its arguments into it.

Now theinteresting part, | want to show theimplementation of the ordered index. It's not too big and it showsthe flexibility

and the extensibility of Triceps:
package Triceps:: Si npl eOr der edl ndex;

our @SA = gwWTriceps::IndexType);

Create a new ordered index. The order is specified
as pairs of (fieldNane, direction) where direction is a string
"ASC' or "DESC'.
sub new # ($cl ass, $fiel dName => $direction...)
{
ny $class = shift;
ny @rgs = @; # save a copy

build a descriptive sortName
ny $sortNanme = 'SinpleOder ';
while ($#_ >= 0) {

ny $fld = shift;
ny $dir = shift;
$sort Nane .= quoteneta($flid) . ' ' . quotemeta($dir) . ', ';

}

$sel f = Triceps:: | ndexType->newPer| Sort ed(
$sort Nanme, '&Triceps:: SinpleOderedlindex::init(@)', undef, @rgs
);
bl ess $sel f, $cl ass;
return $sel f;

}

The initialization function that actually parses the args.
sub init # ($tabt, $idxt, $row, @rgs)
{
ny ($tabt, $idxt, $rowt, @rgs) = @;
my %ef = $rowt->getdef(); # the field definition
ny $errors; # collect as nany errors as possible
ny $conpare = ""; # the generated conparison function
ny $connector = "return"; # what goes between the conpari son operators

while ($#args >= 0) {
ny $f = shift @rgs;
ny $dir = uc(shift @rgs);

ny ($left, $right); # order the operands depending on sorting direction
if ($dir eq "ASC') {
$left = 0; $right =1
} elsif ($dir eq "DESC') {
$left = 1; $right = 0;
} else {

$errors .= "unknown direction '$dir' for field '$f', use 'ASC or 'DESC \n";

keep going, may find nore errors

}

ny $type = $def {$f};

if (!defined $type) {
$errors .= "no field "$f' in the row type\n";
next ;

Ordered index

99

$errors .= "can not order by the field "$f', it has an array type ' $type'
supported yet\n";
next ;
}
ny $getter = "->get(\"" . quoteneta($f) . "\")";
$conmpare .= " S$connector \$_[$left] $getter $cnp \$_[$right] $getter\n”;
$connector = "||";
}
$conpare .= " ;\n";

}

ny $cnp = "<=>"; # the conparison operator
if ($type eq "string"
|| $type =~ /"uint8.*/) {
$cnmp = "cnp"; # string version
} elsif($type =~ /\1%/) {

if (defined $errors) {

\n";

}

help with diagnostics, append the row type to the error listing

$errors .= "the row type is:\n";
$errors .= $rowt ->print();
el se {

set the conparison as source code

not

#print STDERR "DEBUG Triceps:: Sinpl eOrderedl ndex::init: conparison function:\n$conpare

$i dxt - >set Conpar at or ($conpare) ;

return $errors;

}

The class constructor simply builds the sort name from the arguments and offloads the rest of logic to the init function. It
can't really do much more: when the index type object is constructed, it doesn't know yet, where it will be used and what
row type it will get. It tries to enquote nicely the weird characters in the arguments when they go into the sort name. Not
that much useis coming from it at the moment: the C++ code that prints the table type information doesn't do the same, so
there still is a chance of mishalanced quotes in the result. But perhaps the C++ code will be fixed at some point too.

The init function is called at the table type initialization time with all the needed information. It goes through all the
arguments, looks up the fields in the row type, and checks them for correctness. It tries to collect as much of the error
information as possible. The returned error messages may contain multiple lines separated by “\n”, and the ordered index
makes use of it. The error messages get propagated back to the table type level, nicely indented and returned from the table
initialization. If the init function finds any errors, it appends the printout of the row type too, to make finding what went
wrong easier. A result of a particularly bad call to atable typeinitialization may look like this:

index error:
nested index 1 'sorted':

unknown direction ' XASC for field 'z', use 'ASC or 'DESC
no field 'z'" in the row type

can not order by the field 'd', it has an array type 'float64[]', not supported yet

the row type is:
row {
uint8 a,
uint8[] b,
int64 c,
float64[] d,
string e,

100

Tables

Also astheinit goes through the arguments, it constructsthe text of the compare function in the variable $conpar e. Here
theuse of quot enet a() for the user-supplied strings isimportant to avoid the syntax errorsin the generated code. If no
errors are found in the arguments, the compare function gets compiled with eval . There should not be any errors, but it's
always better to check. Finally the compiled compare function is set in the sorted index with

$i dxt - >set Conpar at or ($cnpf unc)

If you uncomment the debugging printout line (and run “make”, and maybe “make i nst al | ” afterwards), you can see
the auto-generated code printed on stderr when you use the simple ordered index. It will look somewhat like this:

sub {
return $_[0]->get("a") cnp $_[1]->get("a")
[$_[1]->get("c") &l t;=> $_[0]->get("c")
[l $_[0]->get("b") cnp $_[1]->get("b")

}

That's it! An entirely new piece of functionality added in a smallish Perl snippet. This is your typical Triceps template:
collect the arguments, use them to build Perl code, and compile it. Of course, if you don't want to deal with the code
generation and compilation, you can just call your class methods and whatnot to interpret the arguments. But if the code
will be reused, the compilation is more efficient.

9.10. The index tree

The index typesin atable type can form a pretty much arbitrary tree. Following the common tree terminology, the index
types that have no other index types nested in them, are called the leaf index types. Since there seems to be no good one-
word naming for the index types that have more index types nested in them (“inner"? "nested" is too confusing), | simply
call them non-leaf.

At the moment the Hashed, Sorted and Ordered index types can be used only in both leaf and non-leaf positions. The FIFO
index types must always be in the leaf position, they don't allow the further nesting.

Now isthe timeto look deeper into what is going on inside atable. Note that I've been very carefully talking about “index
types’ and not “indexes’. In this section the difference matters. The index types are in the table type, the indexes are in
the table. One index type may generate multiple indexes.

Thiswill become clearer after you see the illustrations. First, the legend in the Figure 9.1 .

The index tree 101

TableType

IndexType

Index

Position in an Index

Reference to a Row

Index Iterator in a RowHandle

A RENN

Reference to a Row in a RowHandle

Figure 9.1. Drawings legend.

The nodes belonging to the table type are shown in red, the nodes belonging to the table are shown in blue, and the contents
of the RowHandleis shown separately in yellow. The lines on the drawings represent not exactly pointers as such but more
of the logical connections that may be more complicated than the simple pointers.

The lines in the RowHandle don't mean anything at all, they just show that the parts go together. In reality a RowHandle
is a chunk of memory, with various elements placed in that memory. As far as indexes are concerned, the RowHandle
contains an iterator for every index where it belongs. Thisletsit know its position in the table, to iterate along every index,
and, most importantly, to be removed quickly from every index. A RowHandle belongs to one index of each index type,
and contains the matching number of iteratorsin it.

The table type is shown as a normal flat tree. But the table itself is more complex and becomes 3-dimensional. Its “view
from above’ matches the table type's tree but the data grows “up” in the third dimension.

Let's start with the simplest case: a table type with only one index type. Whether the index type is hash or FIFO, doesn't
matter here.

Tabl eType
+- 1 ndexType "A"

Figure 9.2 shows the table structure.

102 Tables

row handle < 7

Figure9.2. Oneindex type.

The table here always contains exactly one index, matching the one defined index type, and the root index. The root index
isvery dumb, its only purpose isto tie together the multiple top-level indexesinto atree.

The only index of type A provides an ordering of the records, and this ordering is used for the iteration on the table.

For the next example let's ook at the straight nesting in Figure 9.3 .

Tabl eType
+- 1 ndexType "A"
+- 1 ndexType "B"

The index tree 103

root A

A B
row handle T N A

Figure 9.3. Straight nesting.

The stack of row referencesis shown visually divided to match the indexing, but in reality thereisno specia division. This
was done purely to make the picture easier to read.

Thereis still only one index of type A. And this is always the case with the top-level indexes, there is only one of them.
This index divides the rows into 3 groups. Just like the rows in a leaf index, the groups in a non-leaf index are ordered
in some index-specific way.

Each group then has its own second-level index of type B. Which then defines an order for therowsin it. To reiterate: the
index of type A splits the rows by groups, then the group's index of type B defines the order of the rows in the group.

So what happens when we iterate through the table and ask for the next row handle? The current row handle contains the
iterators in the indexes of types A and B. The easy thing is to advance the iterator of type B. Yeah, but in which index?
The Figure 9.3 shows three indexes of type B, let's call them B1, B2 and B3. Theiterator of type B in the row handletells
the relative position in the index, but it doesn't tell, which index it is. We need to step back and look at the index type A.
It'sthe top-level index type, so thereis always only one index for it. Then we take the iterator of type A and find thisrow's
group in the index A. The group contains the index of type B, say B1. We can then take thisindex B1, take the iterator of
type B from the row handle, and advance thisiterator in thisindex. If the advance succeeded, then great, we've got the next
row handle. But if the current row was the last row in B1, we need to step back to the index A again, advance the current
row handle's iterator of type A there, find itsindex B2, and pick the first row handle of B2.

This processiswhat happenswhenweuse $r h- >next | dx($i t B) . Theiteration goes by theleaf index type B, however
it relieson all theindex typesin the path from the table type to B. If we do $r h- >next () , theresult is the same because
thefirst leaf index type is used as the default index type for the iteration.

If we do $r h- >next ($i t A), the semanticsis till the same: return the next row handle (not the next group). Thereis
no way to get to the row handle without going all the way through aleaf index. So when a non-leaf index typeis used for
the iteration, it getsimplicitly extended to itsfirst nested |leaf index type.

What would happen if anew row getsinserted, and theindex type A determinesthat it does not belong to any of the existing
groups? A new group will be created and inserted in the appropriate positionin A'sorder. This group will have anew index
of type B created, and the new row inserted in that index.

104 Tables

What would happen if both rowsin B1 are removed? B1 will become empty and will be collapsed. Theindex A will delete
the B1's group and B1 itself, and will remain with only two groups. The effect propagates upwards: if all the rows are
removed, the last index of type B will collapse, then theindex A will become empty and also collapse and be deleted. The
only thing left will be the root index that stays in the existence no matter what.

When atable is first created, it has only the root index. The rest of the indexes pop into the existence as the rows get
inserted. If you wonder, yes, this does apply to atable type with only one index type as well. Just this point has not been
brought up until now.

Among all this froth of creation and collapse the iterators stay stable. Once arow isinserted, the indexes leading to it are
not going anywhere (at least until that row gets removed). But since other rows and groups may be inserted around it, the
notion of what row is next, will change over time.

Let's go through how the other index-related operations work.

The iteration through the whole table starts with begi n() or begi nl dx(), the first being a form of the second that
always uses the first leaf index type. begi nl dx() isfairly straightforward: it just follows the path from the root to the
leaf, picking the first position in each index along the way, until it hits the RowHandle, asis shown in Figure 9.4 . That
found RowHandle becomes its result. If the tableis empty, it returns the NULL row handle.

A B
o»
B
|
root A
> |
A B

row handle

Figure9.4. begi n(), begi nl dx($i t A) and begi nl dx($i t B) work the samefor thistable.

Thenext pair isfi nd() andfi ndl dx() (andfi ndBy() andfi ndl dxBy() arewrappersaround those). As usual,
find() isthesamethingasfi ndl dx() onthetable'sfirst leaf index type. It also follows the path from the root to the
target index type. On each step it tries to find a matching position in the current index. If the position could not be found,
the search failsand aNULL row handleis returned. If found, it is used to progress to the next index.

As has been mentioned in Section 9.5: “A closer look at the RowHandles’” (p. 86) the search always works internally

on a RowHandle argument. If a plain Row is used as an argument, a new temporary RowHandle will be created for it,
searched, and then freed after the search. Thisworkswell for two reasons. First, the indexes already have the functions for
comparing two row handlesto build their ordering. The same functions are reused for the search. Second, the row handles
contain not only the index iterators but also the cached information from the rows, to make the comparisons faster. The
exact kind of cached information varies by the index type. The FIFO, Sorted and Ordered indexes use none. The Hashed

The index tree 105

indexes calculate a hash of the key field values, that will be used as a quick differentiator for the search. Thisinformation
gets created when the row handle gets created. Whether the row handle is then used to insert into the table or to search in
it, the hash is then used in the same way, to speed up the comparisons.

Infindl dx(),thenon-leaf index type arguments behave differently than the leaf ones: up to and including the index of
the target type, the search works as usual. But then at the next level the logic switches to the same asin begi nl dx(),
going for the first row handle of the first leaf sub-index. This lets you find the first row handle of the matching group
under the target index type.

If you use $t abl e- >fi ndl dx($i t A, $rh), onFigure 9.5 it will go through the root index to the index A. There
it will try to find the matching position. If none is found, the search ends and returns a NULL row handle. If the position
is found, the search progresses towards the first leaf sub-index type. Which is the index type B, and which conveniently
sitsin this case right under A. The position in the index A determines, which index of type B will be used for the next
step. Suppose it's the second position, so the second index of type B is used. Since we're now past the target index A, the
logic used isthe same asfor begi nl dx () , and thefirst positionin B2 is picked. Which then leads to the first row handle
of the second sub-stack of handles.

root

A B
row handle e

Figure9.5.fi ndl dx($i t A, $rh) goesthrough A and then switchestothebegi nl dx() logic.

Themethod fi rst Of Groupl dx() alowsto navigate within agroup, to jump from some row somewhere in the group
to the first one, and then from there iterate through the group. The example in Section 9.6: “A window is a FIFO" (p.
88) made use of it.

The Figure 9.6 shows an example of $t abl e- >fi rst Of G oupl dx($i t B, $rh), where $r h is pointing to the
third record in B2. What it needs to do is go back to B2, and then execute the begi n() logic from there on. However,
remember, the row handle does not have a pointer to the indexes in the path, it only has the iterators. So, to find B2, the
method does not really back up from the original row. It has to start all the way back from the root and follow the path
to B2 using the iterators in $r h. Since it uses the ready iterators, this works fast and requires no row comparisons. But
logically it's equivalent to backing up by onelevel, and I'll continue calling it that for simpicity. Once B2 (an index of type
B) isreached, thebegi n() logic goesfor thefirst row in there.

firstOf Groupl dx() works on both leaf and non-leaf index type arguments in the same way: it backs up from the
reference row to the index of that type and executesthe begi n() logic from there. Obviously, if you use it on a non-leaf
index type, the begi n() -like part will follow itsfirst leaf index type.

106 Tables

row handle

Figure9.6.fi rst O Groupl dx($itB, $rh).

The method next Groupl dx() jumps to the first row of the next group, according to the argument index
type. To do that, it has to retrace one level higher than first Of Groupl dx() . Figure 9.7 shows that $t a-
bl e- >next Groupl dx($i t B, $rh) that starts from the same row handle asin Figure 9.6 , has to logically back up
to theindex A, go to the next iterator there, and then follow to the first row of B3.

row handle

Figure9.7. next Groupl dx($i t B, $rh).

The index tree 107

As before, in redlity there is no backing up, just the path is retraced from the root using the iterators in the row handle.
Once the parent of index type B is reached (which is the index of type A), the path follows not the iterator from the row
handle but the next one (yes, copied from the row handle, increased, followed). This givesthe index of type B that contains
the next group. And from there the same begi n() -likelogic findsitsfirst row.

Sameasfirst O Groupl dx(),next G oupl dx() may beused on both the leaf and non-leaf indexes, with the same
logic.

It's kind of annoying that fi r st OF Gr oupl dx() and next Gr oupl dx() take the index type inside the group while
findl dx() usestakesthe parent index type to act on the same group. But as you can see, each of them follows its own
internal logic, and I'm not sure if they can be reconciled to be more consistent.

At the moment the only navigation isforward. Thereisno matching | ast (), prev() orl ast Groupl dx() or pre-
vG oupl dx() . They areintheplan, but so far they arethevictimsof corner-cutting. Thoughthereisaversionof | ast ()
in the AggregatorContext, since it happens to be particularly important for the aggregation.

Continuing our excursion into the index nesting topologies, the next exampleis of two parallel leaf index types:
Tabl eType

+- I ndexType A

+- 1 ndexType B

Theresulting internal arrangement is shown in Figure 9.8 .

A

B

A
root

B

A B
row handle

Figure 9.8. Two top-level index types.

Each index type produces exactly one index under the root (since the top-level index types always produce one index).
Both indexes contain the same number of rows, and exactly the same rows. When arow is added to the table, it's added

108 Tables

to al the leaf index types (one actual index of each type). When arow is deleted from the table, it's deleted from al the
leaf index types. So the total is always the same. However the order of rows in the indexes may differ. The drawing shows
the row references stacked in the same order asthe index A because theindex A is of thefirst leaf index type, and as such
isthe default one for the iteration.

The row handle contains the iterators for both paths, A and B. It's pretty normal to find a row through one index type and
then iterate from there using the other index type.

The next examplein Figure 9.9 hasa“primary” index with aunique key and a*“ secondary” index that groups the records:

Tabl eType

+- I ndexType A

+- 1 ndexType B
+- I ndexType C

owhandle <> >

Figure9.9. A “primary” and “secondary” index type.

The index type A still produces one index and references all the rows directly. The index of type B produces the groups,
with each group getting an index of type C. The total set of rows referrable through A and through B is till the same but
through B they are split into multiple groups.

And Figure 9.10 shows two leaf index types nested under one non-leaf.

Tabl eType

+- I ndexType A
+- 1 ndexType B
+- I ndexType C

The index tree 109

root A

A B C

row handle

Figure 9.10. Two index types nested under one.

As usud, there is only one index of type A, and it splits the rows into groups. The new item in this picture is that each
group hastwo indexesin it: one of type B and one of type C. Both indexes in the group contain the same rows. They don't
decide, which rowsthey get. Theindex A decides, which rows go into which group. Then if the group 1 contains two rows,
indexes B1 and C1, would both contain two rows each, the exact same set. The stack of row references has been visually
split by groups to make this point more clear.

Thishappensto be apretty useful arrangement: for example, B might be ahash index type, or asorted index type, allowing
to find the records by the key (and for the sorted index, to iterate in the order of keys), while C might be a FIFO index,
keeping the insertion order, and maybe keeping the window size limited.

That's pretty much it for the basic index topologies. Some much more complex index trees can be created, but they would
be the combinations of the examples shown. Also, don't forget that every extraindex type adds overhead in both memory
and CPU time, so avoid adding indexes that are not needed.

One more fine point has to do with the replacement policies. Consider that we have a table that contains the rows with
asinglefield:

idint32

And the table type has two indexes:

110 Tables

Tabl eType
+- 1 ndexType "A" Hashl ndex key=(id)
+- 1 ndexType "B" Fifolndex limt=3

And we send there the rowops:

I NSERT i d
I NSERT i d
I NSERT i d
I NSERT i d

NWN -

The last rowop that inserts the row with id=2 for the second time triggers the replacement policy in both index types. In
the index A it is a duplicate key and will cause the removal of the previous row with id=2. In the index B it overflows
the limit and pushes out the oldest row, the one with id=1. If both records get deleted, the resulting table contents will be
2 rows (shown in FIFO order):

i d=3
i d=2

Which is probably not the best outcome. It might be tolerable with a FIFO index and a hashed index but gets even more
annoying if there are two FIFO index typesin the table: onetop-level limiting the total number of rows, another one nested
under a hashed index, limiting the number of rows per group, and they start conflicting this way with each other.

The Triceps FIFO index is actually smart enough to avoid such problems: it looks at what the preceding indexes have
decided to remove, checksif any of these rows belong to its group, and adjusts its calculation accordingly. In this example
the index B will find out that the row with id=2 is already displaced by the index A. That leaves only 2 rows in the index
B, so adding a new one will need no displacement. The resulting table contents will be

id=1

i d=3

id=2

However here the order of index types isimportant. If the table were to be defined as
Tabl eType

+- 1 ndexType "B" Fifolndex limt=3

+- 1 ndexType "A" Hashl ndex key=(i d)

then the replacement policy of the index type B would run first, find that nothing has been displaced yet, and displace the
row id=1. After that the replacement policy of theindex type A will run, and being a hashed index, it doesn't have a choice,
it has to replace the row id=2. And both rows end up displaced.

If the situations with automatic replacement of rows by the keyed indexes may arise, always make sure to put the keyed
leaf index types before the FIFO leaf index types. However if you always diligently send a DELETE before the INSERT
of the new version of the recond, then this problem won't occur and the order of index types will not matter.

9.11. Table and index type introspection

A lot of information about atable type and the index typesin it can be read back from them.

$resul t
$resul t

= $tabType->islnitialized();

= $i dxType->islnitialized();

return whether atable or index type hasbeeninitialized. Theindex type getsinitialized when the table type where it belongs
gets initialized. After atable or index type has been initialized, it can not be changed any more, and any methods that
change it will return an error. When an index type becomes initialized, it becomestied to a particular table type. Thistable
type can be read with:

$t abType
$t abType

$i dxType- >get Tabt ype() ;
$i dxType- >get Tabt ypeSaf e() ;

Table and index type introspection 111

The difference between these methods is what happens if the index type was not set into atabletypeyet. get Tabt ype()
would confesswhileget Tabt ypeSaf e() wouldreturnanundef . Which method to use, depends on the circumstances:
if this situation is valid and you're ready to check for it and handle it, use get Tabt ypeSaf e() , otherwise use get -
Tabt ype().

Even though an initialized index type can't be tied to another table, when you add it to another table or index type, a deep
copy with all its sub-indexes will be made automatically, and that copy will be uninitialized. So it will be able to get
initialized and tied to the new table. However if you want to add more sub-indexes to it, do a manual copy first:

$i dxTypeCopy = $i dxType->copy();
The information about the nested indexes can be found with:

$i t Sub $t abType- >fi ndSubl ndex("i ndexNanme") ;
$i t Sub $t abType- >f i ndSubl ndexSaf e("i ndexNane") ;
@t Subs = $tabType- >get Subl ndexes();

$it Sub = $i dxType->fi ndSubl ndex("i ndexNane") ;
$i t Sub = $i dxType- >fi ndSubl ndexSaf e("i ndexNane") ;
@t Subs = $i dxType- >get Subl ndexes();

The fi ndSubl ndex() has been aready shown in Section 9.7: “Secondary indexes’” (p. 92). It allows to find the
index types on the next level of nesting, starting down from the table, and going recursively into the sub-indexes. The Saf e
versionsreturnundef if theindex isnot found, instead of confessing. get Subl ndexes() returnstheinformation about
the index types of the next level at once, as the name => value pairs. The result array can be placed into a hash but that
would lose the order of the sub-indexes, and the order isimportant for the logic.

Thisfindstheindex types step by step. An easier way to find an index typein atable type by the “ path of the index” iswith
$i dxType = $tabType->fi ndl ndexPat h(\ @ dxNanes) ;

The argumentsin the array form apath of namesin theindex typetree. If the path is not found, the function would confess.

An empty path is also illegal and would cause the same result. Y es, the argument is not an array but a reference to array.

This array is used essentially as a path object. For example the index from the Section 9.7: “ Secondary indexes’ (p. 92)
could be found as:

$itLast2 = $tt W ndow >findl ndexPat h(["bySynbol", "last2"]);

The key (the set of fields that uniquely identify the rows) of the index type can be found with
@eys = $it->getKey();

It can be used on any kind of index types but actually returns the data only for the Hashed index types. On the other index
typesit returns an empty array, though a better support will be available for the Sorted and Ordered indexes in the future.

A fairly common need is to find an index by its name path, and also all the key fields that are used by all the indexesin
this path. It's used for such purposes as joins, and it allows to treat a nested index pretty much as a composition of all the
indexesin its path. The method

($i dxType, @xeys) = $tabType->findl ndexKeyPat h(\ @at h);

solves this problem and finds by path an index type that allows the direct |ook-up by key fields. It requiresthat every index
typein the path returns anon-empty array of fieldsin get Key () . In practice it meansthat every index in the path must be
aHashed index. Otherwise the method confesses. When the Sorted and maybe other index types will support get Key() ,
they will be usable with this method too.

Besides checking that each index type in the path works by keys, this method builds and returnsthelist of all the key fields
required for alook-up in thisindex. Note that @xeys is an actua array and not a reference to array. The return protocol
of this method is alittle weird: it returns an array of values, with the first value being the reference to the index type, and
the rest of them the names of the key fields. If the table type were defined as

112 Tables

$tt = Triceps:: Tabl eType->new $rt)
- >addSubl ndex (" byCcy1",
Triceps:: I ndexType->newHashed(key => ["ccyl" 1)
- >addSubl ndex("byCcy12",
Triceps:: I ndexType->newHashed(key => ["ccy2" 1)
)

)
- >addSubl ndex(" byCcy2",

Triceps:: I ndexType->newHashed(key => ["ccy2" 1)

- >addSubl ndex("groupi ng", Triceps::I|ndexType->newrifo())
)

1

then $tt->fi ndl ndexKeyPath(["byCcyl", "byCcyl2" 1) would return ($i xtref, "ccyl",
"ccy2"),where$i xtref isthe reference to the index type. When assigned to ($i xt, @eys), $i xtref would
gointo$i xt,and (" ccyl", "ccy2") wouldgointo @eys.

The key field namesin the result go in the order they occurred in the definition, from the outermost to the innermost index.
The key fields must not duplicate. It's possible to define the index types where the key fields duplicate in the path, say:

$tt = Triceps:: Tabl eType->new $rt)
- >addSubl ndex(" byCcy1",
Triceps:: |1 ndexType- >newHashed(key => ["ccyl"])
- >addSubl ndex(" byCcy12",
Triceps:: I ndexType->newHashed(key => ["ccy2", "ccyl"])
)
)

And they would even work fine, with just a little extra overhead from duplication. But f i ndl ndexKeyPat h() will
refuse such indexes and confess.

Y et another way to find an index is by the keys. Think of an SQL query: having a WHERE condition, you would want to
find if there is an index on the fields in the condition, allowing to find the records quickly. Tricepsis not quite up to this
level of automatic query planning yet but it does somefor thejoins. If you know, by which fields you want to join, it'snice
to find the correct index automatically. The finding of an index by key is done with the method:

@ dxPat h = $t abl eType->fi ndl ndexPat hFor Keys(@eyFi el ds) ;

It returns the array that represents the path to an index type that matches these key fields. And then having the path you
can find the index type as such. The index type and al the types in the path still have to be of the Hashed variety. If the
correct index cannot be found, an empty array isreturned. If you specify the fields that aren't present in the row typein the
first place, thisis simply treated the same as being unable to find an index for these fields. If more that one index would
match, the first one found in the direct order of the index tree walk is returned.

Thekind of the index typeis aso known as the typeid. It can be found for an index type with
$id = $i dxType- >get | ndex! d();

It's an integer constant, matching one of the values:

e &Triceps:: | T _HASHED

o &Triceps:: I T_FIFO

o &Triceps:: | T_SORTED

There is no different id for the ordered index, because it's built on top of the sorted index, and would return
&Triceps: : |1 T_SORTED.

The conversion between the strings and constants for index typeids is done with

Table and index type introspection 113

$intld = &Triceps::stringlndexld($stringld);
$stringld = &Triceps::indexldString($intld);

If aninvalid value is supplied, the conversion functions will return undef .
Thereisaso away to find the first index type of a particular kind. It's called somewhat confusingly
$i t Sub = $i dxType->fi ndSubl ndexBy! d($i ndexTypel d) ;

where $i ndexTypel d is one of either of Triceps constants or the matching strings "1 T_HASHED', "1 T_FI FO',
"I T_SORTED'.

Technically, thereis also IT_ROOT but it's of little use for this situation since it's the root of the index type tree hidden
inside the table type, and would never be a sub-index type. It's possible to iterate through al the possible index type ids as

for ($i = 0; $i < &Triceps::IT_LAST; $i++) { ... }

Thefirst leaf sub-index type, that is the default for iteration, can be found explicitly as

$itSub = $tabType->get FirstLeaf();
$it Sub = $i dxType->get Fi rstLeaf ();

If anindex isalready aleaf, get Fi r st Leaf () onitwill returnitself. The“leaf-ness’ of anindex type can be found with:;
$result = $i dxType->i sLeaf ();

The usua reference comparison methods are:

$result = $tabTypel->sanme($tabType2);
$result = $tabTypel->equal s($tabType?2);
$result = $tabTypel->mat ch($t abType2);
$result = $idxTypel->sanme($i dxType2);
$result = $idxTypel->equal s($i dxType2);
$result = $idxTypel->mat ch($i dxType2);

Two table types are considered equal when they have the equal row types, and exactly the same set of index types, with
the same names.

Two table types are considered matching when they have the matching row types, and matching set of index types, although
the names of the index types may be different.

Two index types are considered equal when they are of the same kind (type id), their type-specific parameters are equal,
they have the same number of sub-indexes, with the same names, and equa pair-wise. They must aso have the equal
aggregators, which will be described in detail in the Chapter 11: “ Aggregation” (p. 143) .

Two index types are considered matching when they are of the same kind, have matching type-specific parameters, they
have the same number of sub-indexes, which are matching pair-wise, and the matching aggregators. The names of the sub-
indexes may differ. As far as the type-specific parameters are concerned, it depends on the kind of the index type. The
FIFO type considers any parameters matching. For a Hashed index the key fields must be the same. For a Sorted index the
sorted condition must also be the same, and by extension this means the same condition for the Ordered index.

9.12. The copy tray

The table methodsi nsert (), renove() anddel et eRow() have an extra optional argument: the copy tray.

If used, it will put acopy of all the rowops produced during the operation (including the output of the aggregators, which
will be described in Chapter 11: “Aggregation” (p. 143)) into that tray. The idea here is to use it in cases if you don't

114 Tables

want to connect the output labels of the table directly, but instead collect and process the rows from the tray manually
afterwards. Like this:

$ctr = $unit->makeTray();
$t abl e- >i nsert ($row, S$ctr);
foreach my $rop ($ctr->toArray()) {

}..

However in reality it didn't work out so well. The processing loop would have to have all the lengthy if-else sequences
to branch first by the label (if there are any aggregators) and then by opcode. It looks too difficult. Well, it could work in
the simple situations but not more than that.

In the future this feature will likely be deprecated unless it proves itself useful, and | already have a better idea. Because
of this, | see no point in going into the more extended examples.

9.13. Table wrap-up

Not all of thetable'sfeatures have been shown yet. Thetable classisthe cornerstone of Triceps, and everything isconnected
toit. Theaggregatorswork with the tables and are awhol e separate big subject with their own Chapter 11: “ Aggregation” (p.
143) . The features that take advantage of the streaming functions are described in Section 15.7: “ Streaming functions
and tables’ (p. 266) . There also are many more options and small methods that haven't been touched upon yet. They
are enumerated in the reference chapter, please refer there.

Table wrap-up 115

116

Chapter 10. Templates

10.1. Comparative modularity

The templates are the Triceps term for the reusable program modules. |'ve adopted the term from C++ because that was
my inspiration for flexibility. But the Triceps templates are much more flexible yet. The problem with the C++ templates
isthat you have to writein them likein afunctional language, substituting loops with recursion, with perverse nested calls
for branching, and the result is quite hard to diagnose. Triceps uses the Perl's compilation on the fly to make things easier
and more powerful.

Tricepsis not unique in the desire for modularity. The other CEP systems have it too, but they tend to have it even more
rigid than the C++ templates. Let me show on a simple example.

Coral8 doesn't provide a way to query the windows directly, especially when the CCL is compiled without debugging.
So you're expected to make your own. People at a company where |'ve worked have developed a nice pattern that goes
approximately like this:

/1 some wi ndow that we want to namke queryable
create wi ndow w_ny schema s_ny

keep | ast per key_a per key_ b

keep 1 week;

/1l the streamto send the query requests
/1 (the schema can be shared by all sinple queries)
create schema s_query (

qqq_id string // unique id of the query

create input stream query_ny schema s_query;

/1 the streamto return the results
/1 (all result streanms will inherit a partial schenm)
create schema s_result (
qqq_id string, // returns back the id received in the query
gqq_end boolean, // will be TRUE in the special end indicator record

create output streamresult_ny schema inherits froms_result, s_ny;

/1 now process the query
insert into result_ny

select g.qgq_id, NULL, w*
froms_query as q, w.ny as w,

/1 the end marker

insert into result_ny (qqg_id, qgg_end)
sel ect qqg_id, TRUE

froms_query;

To query the window, a program would select a unique query id, subscribe to result_my with a filter (qgqq_id =
uni que_i d) andsendarecord of (uni que_i d) intoquery_ny. Thenitwould sit and collect theresult rows. Finally
it would get arow with qqgq_end = TRUE and disconnect.

Thisisafairly large amount of code to be repeated for every window. What | would like to to instead isto just write:
create wi ndow w_ny schema s_ny

keep | ast per key_a per key_b

keep 1 week;

make_queryabl e(w_ny);

117

and have the template make_quer yabl e expand into the rest of the code (obviously, the schema definitions would not
need to be expanded repeatedly, they would go into an includefile).

To make things more interesting, it would be nice to have the query filter the results by somefield values. Nothing as fancy
as SQL, just by equality to some fields. Suppose, s my includes the fields field ¢ and field_d, and we want to be able to
filter by them. Then the query can be done as:

create input stream query_mny schema inherits froms_query (
field_c integer,

field_d string

)

/1 result_ny is the sane as before...

/1 query with filtering (in a rather inefficient way)
insert into result_ny
select g.qqq_id, NULL, w*
froms_query as q, w_nny as w
wher e
(g.field_c is null or g.field_c = wfield_c)
and (q.field_d is null or g.field d = wfield_d);

/1 the end marker is as before

insert into result_mny (qqqg_id, qqg_end)
sel ect qqg_id, TRUE

froms_query;

It would be nice then to create this kind of query as atemplate instantiation
nmake_query(w_ny, (field_c, field_d));
Or even better, have the template determine the non-NULL fieldsin the query record and compiletheright query onthefly.

But the Coral8 modules (nor the later Sybase CEP R5) aren't flexible enough to do any of it. A CCL modulerequiresafixed
schemafor all itsinterfaces. The StreamBase language ismoreflexible and allowsto achieve some of theflexibility through
the capture fields, where the “logically unimportant” fields are carried through the modul e as one combined payload field.
But they don't allow the variable lists of fields as parameters either, nor generation of different model topologies depending
on the parameters.

10.2. Template variety

A templatein Tricepsisgenerally afunction or classthat creates afragment of the model based on itsarguments. It provides
the access points used to connect this fragment to the rest of the model.

There are different ways do do this. They can be broadly classified in the order of increasing complexity as:

A function that creates asingle Triceps object and returnsit. The benefit is that the function would automatically choose
some complex object parameters based on the function parameters, thus turning a complex creation into a simple one.

» A classthat similarly creates multiple fixed objects and interconnects them properly. It would a so provide the accessor
methods to export the access points of this sub-model. Since the Perl functions may return multiple values, this func-
tionality sometimes can be conveniently done with a function as well, returning the access pointsin the return array.

» A class or function that creates multiple objects, with their number and connections dependent on the parameters. For
asimple example, atemplate might receive multiple functions/closures as arguments and then create a pipeline of com-
putational labels, each of them computing one function (of course, this really makes sense only when each label runs
in a separate thread).

» A class or function that automatically generates the Perl code that will be used in the created objects. For a smple
example, given the pairs of field names and values, a template can generate the code for afilter label that would pass

118 Templates

only the rows where these fields have these values. The same effect can often be achieved by the interpretation as well:
keep the arguments until the evaluation needs to be done, and then interpret them. But the early code generation with
compilation improves the efficiency of the computation. It's the same idea as in the C++ templates; do more of the hard
work at the compile time and then run faster.

The more complex and flexible is the template, the more difficult it's generally to write and debug, but then it just works,
encapsulating a complex problem with a simpler interface. There is also the problem of user errors: when the user gives
an incorrect argument to a complex template, understanding what exactly went wrong when the error manifests itself,
may be quite difficult. The C++ templates are a good example of this. However the use of Perl, a general programming
language, as a template language in Triceps provides a good solution for this problem: just check the arguments early in
the template and produce the meaningful error messages. It may be a bit cumbersome to write but then easy to use. | also
have plans for improving the automatic error reports, to make tracking through the layers of templates easier with minimal
code additions in the templ ates.

I will show the examples of all the template types by implementing the table querying, the same | have shown in CCL in
Section 10.1: “ Comparative modularity” (p. 117) , only now in Triceps.

10.3. Simple wrapper templates

The SimpleServer package described in Section 7.9: “Main loop with asocket” (p. 54) containstemplatesfor the repeating
tasks. makeExi t Label () createsalabel that will request the server to exit, makeSer ver Qut Label () createsalabel
that will send the rows from some label back into the socket.

Rather than copying the code here again, please refer to the description in Section 7.9: “Main loop with a socket” (p. 54) .

Another similar template that is used throughout the following chapters creates a label that prints the rowop contents. It's
located in the package that wraps the input (e.g. feeding) and output of the tests:

package Triceps:: X : Test Feed,;

a tenplate to nake a label that prints the data passing through another | abel
sub nmakePrintLabel ($$) # ($print_| abel _nane, $parent_| abel)

{
ny $nane = shift;
ny $l bParent = shift;
ny $l b = $I bParent->get Uni t ()->nmakelLabel ($| bPar ent - >get Type(), $nane,
undef, sub { # (label, rowop)
print($_[1]->printP(), "“\n");
1)
$l bPar ent - >chai n($l b) ;
return $l b;

}

It works very much the same asmakeSer ver Qut Label (), only printsto a different destination.

10.4. Templates of interconnected components

Let'smoveonto the query template. It will work alittle differently than the CCL version. First, the socket main loop allows
to send the response directly to the same client who issued the request. So there is no need for adding the request id field
in the response and for the client filtering by it. Second, Triceps rows have the opcode field, which can be used to signal
the end of the response. For example, the data rows can be sent with the opcode INSERT and the indication of the end of
response can be sent with the opcode NOP and all fields NULL. The query template can then be made as follows:

package Queryl;

sub new # ($cl ass, $table, $nane)

{
ny $class = shift;

Simple wrapper templates 119

ny $table = shift;
ny $nanme = shift;

ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

ny $self = {};
$sel f->{unit} = $unit;
$sel f - >{nane} = $nane;

$sel f->{tabl e} = $table;
$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {
This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));

}
The end is signaled by OP_NOP with enpty fields.

$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $uni t->makeDumyLabel ($rt, $nanme . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}

sub get | nputLabel # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

sub get Qut put Label # ($self)

ny $self = shift;
return $sel f->{out Label };

}

sub get Nane # ($sel f)
ny $self = shift;
return $sel f->{nane};

}

It creates the input label that does the work and the dummy output label that is used to send the result. The logic is easy:
whenever arowop is received on the input label, iterate through the table and send the contents to the output label. The
contents of that received rowop doesn't even matter. The getter methods allow to get the endpoints.

Now this example can be used in a program. Most of it is the example infrastructure: the function to start the server in
background and connect a client to it, the creation of the row type and table type to query, and then finally near the end the
interesting part: the usage of the query template. The general running is enclosed in the package Triceps::X::DumbClient:

package Triceps:: X :DunbCient;
sub run # (%l abel s)
ny $l abels = shift;

ny ($port, $pid) = Triceps:: X :SinpleServer::startServer(0, $labels);
ny $sock = 1O : Socket: : | NET->new

120 Templates

Proto => "tcp",

Peer Addr => "l ocal host",

Peer Port => $port,
) or confess "socket failed: $!'";
whi |l e(& readLi ne) {

$sock->print ($);

$sock->fl ush();
}
$sock->print ("exit, OP_I NSERT\n");
$sock->fl ush();
$sock- >shut down(1); # SHUT_WR
whi | e(<$sock>) {

& send($);

}
wai t pi d($pi d, 0);
}

Thefunctionr un() takes care of making the example easier to run: it starts the server in the background, reads the input
dataand sendsit to the server, then reads the responses and prints them back, and finally waits for the server processto exit.
It also takes care of sending the exit request to the server when the input reaches EOF. The approach with first sending all
the data there and then reading all the responses back is not very good. It works only if either the data gets sent without any
responses, or asmall amount of data (not to overflow the TCP buffers al ong the way) gets sent and then it'sall the responses
coming back. But it'ssimple, and it works good enough for the small examples. And actually many of the commercial CEP
interfaces work exacly like this: they either publish the data to the model or send a small subscription request and print
the data received from the subscription.

Then the actual example makes use of this function:

The basic table type to be used as tenplate argunent.
our $rtTrade = Triceps:: RowType- >new(

id=>"int32", # trade unique id

synbol => "string", # synmbol traded

price => "fl oat 64",

size => "float64", # nunber of shares traded

)

our $ttWndow = Triceps:: Tabl eType->new $rt Tr ade)
- >addSubl ndex(" bySymbol ",
Tri ceps:: Si npl eOr der edl ndex- >new(synbol => "ASC")
- >addSubl ndex(" | ast 2",
Triceps:: I ndexType->newFi fo(limt => 2)
)
)

$tt W ndow >initialize();

ny $uTrades Triceps::Unit->new("uTrades");

ny $t Wndow = $uTrades- >makeTabl e($tt W ndow, "t W ndow');

ny $query = Queryl->new($t W ndow, "gW ndow");

ny $srvout = &Triceps:: X :SinpleServer:: makeServer Qut Label ($query->get Qut put Label ());

ny %di spatch;

$di spat ch{ $t W ndow >get Nanme()} = $t W ndow >get | nput Label ();

$di spat ch{ $query- >get Nane()} = $query- >get | nput Label ();

$di spatch{"exit"} = &Triceps:: X :Si npl eServer:: makeExi t Label ($uTrades, "exit");

Triceps:: X :DunmbCient::run(\%i spatch);

The row type and table type have been just copied from some other example. Thereis no particular meaning to why such
fields were selected or why the table has such indexes. They have been selected semi-randomly. The only triucky thing
that affects the result is that this table implements a window with alimit of 2 rows per symbol.

Templates of interconnected components 121

After thetableis created, the template instantiation isasingle call, Quer y1- >new() . Then the output label of the query
template gets connected to alabel that sends the output back to the client, and that's it.

Hereis an example of arun, with theinput rows printed as alwaysin bold.

t W ndow, OP_I NSERT, 1, AAA, 10, 10

t W ndow, OP_I NSERT, 3, AAA, 20, 20

gW ndow, OP_I NSERT

gW ndow. out , OP_| NSERT, 1, AAA, 10, 10
gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_NCP, , , ,

t W ndow, OP_I NSERT, 5, AAA, 30, 30

gW ndow, OP_I NSERT

gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_| NSERT, 5, AAA, 30, 30
gW ndow. out, OP_NCP, , , ,

Because of theway r un() works, all theinput rows are printed before the output ones. If it were smarter and knew, when
to expect the responses before sending more inputs, the output would have been:

t W ndow, OP_I NSERT, 1, AAA 10, 10

t W ndow, OP_I| NSERT, 3, AAA, 20, 20

gW ndow, OP_| NSERT

gW ndow. out , OP_I NSERT, 1, AAA 10, 10
gW ndow. out , OP_I NSERT, 3, AAA 20, 20
gW ndow. out , OP_NOPR, , , ,

t W ndow, OP_I| NSERT, 5, AAA, 30, 30

gW ndow, OP_I| NSERT

gW ndow. out , OP_I NSERT, 3, AAA 20, 20
gW ndow. out , OP_I NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NOP, , , ,

Two rows get inserted into the table, then a query is done, then one more row is inserted, then another query sent. When
the third row is inserted, the first row gets thrown away by the window limit, so the second query also returns two rows
albeit different than the first query does.

It is possible to fold the table and the client send label creation into the template as well. It will then be used as follows:

nmy $w ndow = $uTrades- >makeTabl eQuer y2($tt W ndow, "wi ndow');

ny %di spat ch;

$di spat ch{ $wi ndow >get Nane()} = $w ndow >get | nput Label ();

$di spat ch{$wi ndow >get Quer yLabel ()->get Name()} = $w ndow >get QueryLabel ();
$di spatch{"exit"} = &ServerHel pers:: makeExitLabel ($uTrades, "exit");

The rest of the infrastructure would stay unchanged. Just to show how it can be done, I've even added a factory method
Uni t:: makeTabl eQuery2() . Theimplementation of thistemplateis:

package Tabl eQuery?2;
use Carp;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $unit, $tabType, $nane)
{

ny $class = shift;

ny $unit = shift;

ny $tabType = shift;
ny $nanme = shift;
ny
ny

$tabl e = $unit->makeTabl e($t abType, $nane);
$rt = $tabl e- >get RowType();

122 Templates

ny $self = {};

$sel f->{unit} $uni t;
$sel f - >{ nane} $nane;
$sel f->{tabl e} = $table;

$sel f->{gLabel} = $unit->nakeLabel ($rt, $name . ".query", undef, sub {

This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (; !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f->{resLabel } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{resLabel}, "OP_NOP");
}, $self);
$sel f->{resLabel } = $unit->makeDumyLabel ($rt, $name . ".response");

$sel f->{sendLabel } = &Triceps:: X: :Sinpl eServer: : nakeServer Qut Label ($sel f->{reslLabel });

bl ess $sel f, $cl ass;
return $sel f;

}

sub get Nane # ($sel f)

ny $self = shift;
return $sel f->{nane};

}
sub get QueryLabel # ($self)

ny $self = shift;
return $sel f->{qglLabel };
}

sub get ResponselLabel # ($self)

ny $self = shift;
return $sel f->{resLabel };

}

sub get SendLabel # ($self)

ny $self = shift;
return $sel f->{sendLabel };

}
sub get Table # ($sel f)

ny $self = shift;
return $sel f->{tabl e};

}

sub get |l nputLabel # ($self)

ny $self = shift;
return $sel f->{tabl e}->get | nputLabel ();
}

sub get Qut put Label # ($self)
{

Templates of interconnected components

123

ny $self = shift;
return $sel f->{tabl e}->get Qut put Label ();
}

sub get PreLabel # ($self)

ny $self = shift;
return $sel f->{tabl e}->get PreLabel ();
}

add a factory to the Unit type
package Triceps::Unit;

sub makeTabl eQuery2 # ($self, $tabType, $nane)

{
return Tabl eQuery2->new(@) ;

}

The meat of the logic stays the same. The creation of the table and of the client sending label are added around it, as well
as abunch of getter methods to get access to the components.

The output of this exampleisthe same, with the only difference that it expects and sends different 1abel names:

ndow, OP_I NSERT, 1, AAA, 10, 10

ndow, OP_I NSERT, 3, AAA, 20, 20

ndow. query, OP_I NSERT

ndow, OP_I NSERT, 5, AAA, 30, 30

ndow. query, OP_I NSERT

ndow. r esponse, OP_I NSERT, 1, AAA, 10, 10
ndow. r esponse, OP_I NSERT, 3, AAA, 20, 20
ndow. r esponse, OP_NOP, , , ,

ndow. r esponse, OP_I NSERT, 3, AAA, 20, 20
ndow. r esponse, OP_I NSERT, 5, AAA, 30, 30
ndow. r esponse, OP_NOP, , , ,

10.5. Template options

Often the arguments of the template constructor become more convenient to organize in the option name-value pairs. It
becomes particularly useful when there are many arguments and/or when some of them really are optional. For our little
query template this is not the case but it can be written with options nevertheless (a modification of the original version,
without the tablein it):

£ £sssss22s s

package Query3;

sub new # ($cl ass, $opti onName => $optionVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt::parse($class, $self, {
name => [undef, \&Triceps::Opt::ck_nmandatory],
table => [undef, sub { &Triceps::Opt::ck_mandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Table") } 1],
b@);

ny $nane = $sel f->{nane};
ny $table = $sel f->{table};

ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

124 Templates

$sel f->{unit} $uni t;
$sel f - >{ nane} $nane;
$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {
This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));

}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;

return $self;
}
The getter methods stayed the same, so I've skipped them here. The call has changed:
ny $query = Query3->new(table => $t Wndow, nanme => "qW ndow');
The output stayed the same.

The class Triceps::Opt is used to parse the arguments formatted as options. There is actually a similar option parser in
CPAN but it didn't do everything | wanted, and considering how tiny it is, it's easier to write a new one from scratch than
to extend that one. | aso like to avoid the extra dependencies.

The heart of it is the method Tri ceps: : Opt:: parse(). It's normaly caled from a class constructor to parse the
constructor's options, but can be called from the other functions as well. It does the following:

Checks that al the options are known.

Checks that the values are acceptable.

» Copiesthe valuesinto the instance hash of the calling class.

Provides the default values for the unspecified options.

If anything goes wrong, it confesses with areasonable message. The argumentstell the class name for the messages (since,
remember, it is normally called from the class constructor), the reference to the object instance hash where to copy the
options, the descriptions of the supported options, and the actual key-value pairs.

Attheend of it, if al went well, the query's $sel f will have the values at keys“name” and “table’.

The options descriptions go in pairs of option name and an array reference with description. The array contains the default
value and the checking function, either of which may be undef . The checking function returns if everything went fine or
confesses on any errors. To die happily with a proper message, it gets not only the value to check but more, altogether:

» Thevaueto check.

» The name of the option.

» The name of the class, for error messages.

The object instance ($sel), justin case.

Template options 125

If you want to do multiple checks, you just make a closure and call all the checksin sequence, passing @ to them all, like
shown here for the option “table”. If more arguments need to be passed to the checking function, just add them after @
(or, if you prefer, beforeit, if you write your checking function that way).

Y ou can create any checking functions, but afew ready ones are provided:
e Triceps::Opt::ck_mandat ory checksthat the valueis defined.

e Triceps:: Opt::ck_ref checksthatthevalueisareferenceto aparticular class, or aclassderived fromit. Just give
the class name as the extra argument. Or, to check that the reference isto array or hash, make the argument " ARRAY"
or "HASH' . Or an empty string " " to check that it's not a reference at all. For the arrays and hashes it can also check
the values contained in them for being references to the correct types: give that type as the second extra argument. But
it doesn't go deeper than that, just one nesting level. It might be extended later, but for now one nesting level has been
enough.

* Triceps:: Opt::ck_refscal ar checks that the value is a reference to a scalar. This is designed to check the
arguments which are used to return data back to the caller, and it would accept any previous value in that scalar: an
actual scalar value, an undef or areference, sinceit's about to be overwritten anyway.

Theck _ref () andck_refscal ar () alow thevalueto be undefined, so they can safely be used on the truly optional
options. When | come up with more of the useful check functions, I'll add them.

Triceps::Opt provides more helper functions to deal with options after they have been parsed. One of them is handl e-

Uni t TypeLabel () that handles a very specific but frequently occuring case: Depending on the usage, sometimes it's
more convenient to give the template theinput row type and unit, and later chain itsinput to another |abel; and sometimesit's
more convenient to giveit another ready label and have the template find out the row type and unit from it, and chainitsin-
put to that label automatically, like Ser ver Hel per s: : nakeSer ver Qut Label () wasshown doingin Section 10.3:
“Simple wrapper templates’ (p. 119) . It's possible if the unit, row type and source label are made the optional options.

Triceps:: Opt:: handl eUnit TypeLabel () takes care of sorting out what information is available, that enough
of it isavailable, that exactly one of row type or source label optionsis specified, and fillsin the unit and row type values
from the source label (specifying the unit option along with the source label is OK aslong asthe unit isthe same). To show
it off, | re-wrote the Ser ver Hel per s: : makeSer ver Qut Label () asaclasswith options:

package Server Qut put;
use Carp;

sub CLONE_SKIP { 1; }

Sending of rows to the server output.
sub new # ($class, $option => $value, ...)

{

no war ni ngs;

ny $class = shift;
ny $self = {};

&Triceps:: Opt::parse($class, $self, {
name => [undef, undef],
unit => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Unit") }],
rowlType => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::RowType") } 1,
fromLabel => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Label") }],
@),

&Triceps:: Opt:: handl eUni t TypeLabel (" $cl ass: : new',
unit => \$sel f->{unit},

rowType => \$sel f->{rowType},

fromLabel => \$sel f->{fronlLabel}
)

126 Templates

ny $fronLabel = $sel f->{fronlLabel};

if (!defined $self->{nane}) {
confess "$cl ass::new nust specify at |east one of the options nane and fronliabel"
unl ess (defined $sel f->{fronlabel });
$sel f->{nane} = $fronlabel ->get Nane() . ".serverQut";
}

ny $Ilb = $sel f->{unit}->nmakelLabel ($sel f->{rowType},
$sel f->{nane}, undef, sub {

&Triceps:: X :SinpleServer::outCurBuf (join(",",
$fronlLabel ? $fronlLabel - >get Nane() : $sel f->{nane},
&Triceps: :opcodeString($_[1] - >get Opcode()),
$ [1]->getRow()->toArray()) . "\n");

}, $self # $self is not used in the function but used for cleaning
)
$sel f->{inLabel} = $I b;
if (defined $froniLabel) {
$f ronLabel - >chai n($l b) ;
}

bl ess $sel f, $cl ass;
return $sel f;

}
sub get | nputlLabel () # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

Theargumentsto Tri ceps: : Opt : : handl eUni t TypelLabel () arethecaler function namefor the error messages,
and the pairs of option name and reference to the option value for the unit, row type and the source label.

The new class also hasthe optional option “name”. If it's not specified and “fromLabel” is specified, the nameis generated
by appending a suffix to the name of the source label. The new class can be used in one of two ways, either

nmy $srvout = Server Qut put->new(fronLabel => $query->get Qut put Label ());
or

ny $srvout = Server Qut put - >new(
name => "out",

unit => $uTrades,

rowType => $t W ndow >get RowType(),

)
$quer y- >get Qut put Label () - >chai n($srvout - >get | nput Label ());

The second form comes handy if you want to create it before creating the query.

The other helper function is Tri ceps: : Opt: : checkMuit ual | yExcl usi ve() . It checks that no more than one
option from the list is specified. The joins use it to alow multiple ways to specify the join condition. For now I'll show a
bit contrived example, rewriting the last example of ServerOutput with it:

package Server Qut put 2;
use Carp;

sub CLONE_SKIP { 1; }

Sending of rows to the server output.
sub new # ($cl ass, $option => $value, ...)

Template options 127

{

no war ni ngs;

ny $class = shift;
ny $self = {};

&Triceps:: Opt:: parse($class, $self, {

name => [undef, undef],

unit => [undef, sub { &Triceps::Opt::ck_nandatory; &Triceps::Opt::ck_ref(@,
"Triceps::Unit") } 1,

rowType => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Rowlype") }],

fromLabel => [undef, sub { &Triceps:: Opt::ck_ref(@, "Triceps::Label") }]
b @);

ny $fronLabel = $sel f->{fronlLabel};
if (&Triceps::Opt::checkMitual |l yExcl usive("$cl ass::new', 1,
rowType => $sel f->{rowType},
fromLabel => $sel f->{fronlLabel }
) eq "fronlLabel"

) |
$sel f->{rowType} = $fronlabel - >get RowType();
}

if (!defined $self->{nane}) {
confess "$cl ass::new nust specify at |east one of the options nane and fronliabel"
unl ess (defined $sel f->{fronlabel });
$sel f->{nane} = $fronlabel ->get Nane() . ".serverQut";

}

ny $lb = $sel f->{unit}->nmakelLabel ($sel f->{rowType},
$sel f->{nane}, undef, sub {

&Triceps:: X :SinpleServer: :out CurBuf (join(",",
$fronlLabel ? $fronlLabel - >get Nane() : $sel f->{nane},
&Triceps: :opcodeString($_[1] - >get Opcode()),
$ [1]->getRow()->toArray()) . "\n");

}, $self # $self is not used in the function but used for cleaning
)
$sel f->{inLabel} = $I b;
if (defined $froniLabel) {
$f ronlLabel - >chai n($l b) ;
}

bl ess $sel f, $cl ass;
return $sel f;

}
sub get | nputlLabel () # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

Theargumentsof theTr i ceps: : Opt : : checkMut ual | yExcl usi ve() arethecaller namefor error messages, flag
whether one of the mutually exclusive options must be specified, and the pairs of option names and values (this time not
references, just values). It returns the name of the only option specified by the user, or undef if none were. If more than
one option was used, or if none were used and the mandatory flag is set, the function will confess.

The way this version of the code works, the option “unit” must be specified in any case, so the use case with the source
label becomes:

ny $srvout = Server Qut put 2- >new(

128 Templates

unit => $uTrades
fronLabel => $query->get Qut put Label ()

)

The use case with the independent creation is the same as with the previous version of the Ser ver Qut put .

10.6. Code generation in the templates

Suppose we want to filter the result of the query by the equality to the fields in the query request row. The list of the fields
would be given to the query template. The query code would check if these fields are not NULL (and since the simplistic
CSV parsing is not good enough to tell between NULL and empty values, not an empty value either), and pass only the
rows that match it. Here we go (skipping the methods that are the same as before):

package Query4,;
use Carp;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $opti onName => $opti onVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, S$self, {

name => [undef, \&Triceps::Opt::ck_nmandatory],

table => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Table") } 1],

fields => [undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY') } 1,
b@);

ny $nane = $sel f->{nane};

ny $table = $sel f->{table};
ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

ny $fields = $sel f->{fields};
if (defined $fields) {
ny %tdef = $rt->getdef();
foreach ny $f (@fields) {
ny $t = $rtdef{$f};
confess "$cl ass::new. unknown field "$f', the row type is:\n"
$rt->print() . " "
unl ess defined $t;

}
}
$sel f->{unit} = $Sunit;
$sel f - >{nane} = $nane;

$sel f->{inLabel} = $unit->nakelLabel ($rt, $name . ".in",
ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->{conpare};
ny $rh = $sel f->{tabl e}->begin();
ITER for (; !'$rh->isNull(); $rh = $rh->next()) {
if (defined $self->{fields}) {
ny $data = $rh->get Row();
ny %tdef = $sel f->{tabl e}->get RowType()->getdef();
foreach ny $f (@$self->{fields}}) {
ny $v = $query->get ($f);

undef, sub {

Code generation in the templates 129

Since the sinplified CSV parsing in the mai nLoop() provides
no easy way to send NULLs, consider any enpty or 0 val ue
in the query row equival ent to NULLs.
if ($v
&& (&Triceps::Fields::isStringType($rtdef{$f})

? $query->get ($f) ne $dat a- >get ($f)

$query- >get ($f) ! = $dat a- >get ($f)
)

) |
next | TER,
}

}

$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label }, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}
Used as:

ny $query = Query4->new(table => $t Wndow, nanme => "qW ndow',
fields => ["synmbol", "price"]);

The field names get checked up front for correctness. And then at run time the code iterates through them
and does the checking. Since the comparisons have to be done differently for the string and numeric values,
Triceps::Fields::isStringType() isusedtocheck thetypeof thefields. Triceps::Fieldsisacollection of func-
tionsthat help dealing with fieldsin thetemplates. Another similar functionisTri ceps: : Fi el ds: :i sArrayType()

If the option “fields” is not specified, it would work the same as before and produce the same result. For the filtering by
symbol and price, a sample output is:

t W ndow, OP_I| NSERT, 1, AAA, 10, 10

t W ndow, OP_I| NSERT, 3, AAA, 20, 20

t W ndow, OP_I| NSERT, 4, BBB, 20, 20

gW ndow, OP_| NSERT

gW ndow. out , OP_I NSERT, 1, AAA, 10, 10
gW ndow. out , OP_I NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NOP, , , ,

t W ndow, OP_I| NSERT, 5, AAA, 30, 30

gW ndow, OP_I| NSERT, 5, AAA, 0, O

gW ndow. out , OP_I NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NOP, , , ,

gW ndow, OP_| NSERT, 0, , 20,0

gW ndow. out , OP_I NSERT, 3, AAA, 20, 20
gW ndow. out , OP_I| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NOP, , , ,

The table data now has one more row of data added to it, with the symbol “BBB”. The first query has no values to filter
init, so it just dumps the whole table as before. The second query filters by the symbol “AAA”. Thefield for priceis0, so
it gets treated as empty and excluded from the comparison. The fields for id and size are not in the fields option, so they
get ignored even if the value of id is 5. The third query filters by the price equal to 20. The symbol field is empty in the
guery, so it does not participate in the filtering.

130 Templates

Looking at the query execution code, now there is a lot more going on in it. And quite a bit of it is static, that could
be computed at the time the query object is created. The next version does that, building and compiling the comparator
function in advance:

package Querys;
use Carp;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $opti onName => $opti onVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt::parse($class, $self, {

name => [undef, \&Triceps::Opt::ck_nmandatory],

table => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::Table") } 1],

fields => [undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY') } 1,

saveCodeTo => [undef, \&Triceps:: Opt::ck_refscalar],

@)
nmy $name = S$sel f->{nanme};

ny $table = $sel f->{table};
ny $unit = $table->getUnit();
ny $rt = $tabl e- >get RowType();

ny $fields = $sel f->{fields};
if (defined $fields) {
ny %tdef = $rt->getdef();

Generate the code of the conparison function by the fields
Since the sinplified CSV parsing in the mai nLoop() provides
no easy way to send NULLs, consider any enpty or 0 val ue

in the query row equival ent to NULLs.

ny $gencnp =
sub # ($query, $data)
{
use strict;
ny ($query, $data) = @;
ny $v;';

foreach ny $f (@fields) {
ny $t = $rtdef{$f};
confess "$cl ass::new. unknown field "$f', the row type is:\n"
$rt->print() . " "
unl ess defined $t;
$gencnp . ="'
$v = $query- >get (
if (sv) {";
if (&Triceps::Fields::isStringType($t)) {
$gencnp . ="'
return 0 if ($v ne $data->get ("' . quotenmeta(S$f) . ""));';
} else {
$gencnp .
return 0 if ($v != $data->get ("' . quotenmeta(S$f) . ""));';
}

$gencnp . =
s

quoteneta($f) . '");

Code generation in the templates 131

$gencnp . =
return 1; # all succeeded

|

${ $sel f - >{saveCodeTo}} = $gencnp if (defined(S$self->{saveCodeTo}));

$sel f->{conpare} = eval $gencnp;

$@al ready contains an \n at the end

confess("Internal error: $class failed to conpile the conparator:\n$@unction text:\n"

. Triceps::Code::numalign($gencnmp, " ") . "\n")
if $@
}
$sel f->{unit} = $unit;
$sel f - >{nanme} = $nane;

$sel f->{inLabel} = $unit->makeLabel ($rt, $name . ".in", undef, sub {
ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->{conpare};
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
if (!defined $cnp || &bcnp($query, $rh->getRow())) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));
}
}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal | ($sel f->{outLabel}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}

The code of the anonymous comparison function gets generated in $gencnp and then compiled by using eval .

If the compilation fails (which should never happen, since the generated code should be always correct), it's printed out as
apart of the error message, making the diagnostic easier. The function numal i gn() makes the error messages easier to
match to the code by printing out the line numbers with the code. It's described in detail in Section 19.2: “Code helpers
reference” (p. 363) .

eval returns the pointer to the compiled function which is then used at run time. The generation uses all the same logic
to decide on the string or numeric comparisons, and also effectively unrollsthe loop. When generating the string constants
in functions from the user-supplied values, it's important to enquote them with quot enet a() . Even when we're talking
about the field names, they still could have some funny characters in them. The option “saveCodeTo” can be used to get
the source code of the comparator, it gets saved at the reference after it gets generated.

If thefilter field option is not used, the comparator remains undefined.

The use of this version is the same as of the previous one, but to show the source code of the comparator, I've added its
printout:

ny $cnpcode;
ny $query = Query5->new(table => $t W ndow, nane => "qW ndow"',
fields => ["synbol ", "price"], saveCodeTo => \$cnpcode);

as a denonstration
print (" Code:\n$cnpcode\n");

This produces the result:

Code:

132 Templates

sub # ($query, $data)

{

}
t W ndow,

t W ndow,
t W ndow,
gW ndow,
gW ndow.
gW ndow.
gW ndow.
gW ndow.
t W ndow,
gW ndow,
gW ndow.
gW ndow.
gW ndow.
gW ndow,
gW ndow.
gW ndow.
gW ndow.

use strict;
ny ($query, $data) = @;
ny $v = $query->get ("synbol");
if ($v) {
return 0 if ($v ne $data->get ("synbol "));

}
ny $v = $query->get ("price");
if ($v) {
return 0 if ($v != $data->get("price"));
}

return 1; # all succeeded

OP_I NSERT, 1, AAA, 10, 10
OP_I NSERT, 3, AAA, 20, 20

OP_I NSERT, 4, BBB, 20, 20

OP_I NSERT

out, OP_I NSERT, 1, AAA, 10, 10
out, OP_I NSERT, 3, AAA, 20, 20
out , OP_I| NSERT, 4, BBB, 20, 20
out, OP_NOP, , ,,

OP_I NSERT, 5, AAA, 30, 30

OP_I NSERT, 5, AAA, 0,0

out, OP_I NSERT, 3, AAA, 20, 20
out, OP_I NSERT, 5, AAA, 30, 30
out, OP_NOP, , ,,

OP_I NSERT, 0, , 20,0

out, OP_I NSERT, 3, AAA, 20, 20
out, OP_I| NSERT, 4, BBB, 20, 20
out, OP_NOP, , ,,

Besides the code printout, the result is the same as last time.

Now, why list the fieldsin an option? Why not just take them all? After all, if the user doesn't want filtering on somefield,
he can always simply not set it in the query row. If the efficiency is a concern, with possibly hundreds of fields in the row
with only few of them used for filtering, we can do better: we can generate and compile the comparison function after we
see the query row. Here goes the next version that does all this:

package

Quer y6;

use Carp;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $opti onName => $opti onVal ue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {

name => [undef,

t abl

"Triceps::Table") } 1],
bo@);

ny $nane = $sel f->{nane};

ny $table = $sel f->{table};
ny $unit = $table->getUnit();

ny $rt

= $t abl e- >get RowType() ;

\ &Triceps:: Opt::ck_nmandatory],
e => [undef, sub { &Triceps:: Opt::ck_nandatory(@);

&Triceps:: Opt::ck_ref(@,

Code generation in the templates

133

$sel f->{unit} = $Sunit;
$sel f - >{nane} = $nane;
$sel f->{inLabel} = $unit->nmakeLabel ($rt, $name . ".in", undef,
ny ($label, $rop, $self) = @;
ny $query = $rop->get Row();
ny $cnp = $sel f->genConpari son($query);
ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
if (&cmp($query, $rh->getRow())) {
$sel f->{unit}->call(

sub {

$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT", $rh->getRow()));

}
}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumyLabel ($rt, $name . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}
Generate the conparison function on the fly fromthe fields in the
query row.
Since the sinplified CSV parsing in the mai nLoop() provides
no easy way to send NULLs, consider any enpty or 0 val ue
in the query row equival ent to NULLs.
sub genConparison # ($self, $query)
{
ny $self = shift;
ny $query = shift;
ny %hash = $query- >t oHash();
ny %tdef = $sel f->{tabl e}->get RowType()->getdef();
nmy ($f, $v);
ny $gencnp =
sub # ($query, $data)
{

use strict;"';

the sorting keeps the key order predictable for the tests;
the can al so be done with Hash::UWil::hash_traversal _mask()
but woul d not be backwards-conpatibl e
foreach $f (sort keys %ghash) {

$v = $ghash{$f};

next unless($v);

ny $t = $rtdef{$f};

if (&Triceps::Fields::isStringType($t)) {

$gencnp . ="'
return 0 if ($_[0]->get("' . quoteneta($f) . '")
ne $ [1]->get("' . quotemeta($f) . "'"));';
} else {
$gencnp . ="'
return O if ($_[0]->get("' . quoteneta($f) . '")
1= $ [1]->get("" . quotemeta($f) . "'"));';
}
}
$gencnp . ="'
return 1; # all succeeded
134

Templates

I

ny $conpare = eval $gencnp;
$@al ready contains an \n at the end

confess("Internal error: Query '" . $sel f->{nane}
"' failed to conpile the conparator:\n$@unction text:\n"
. Triceps::Code::numalign($gencnmp, " ") . "\n")
if $@

for debugging
&Triceps:: X:: Sinpl eServer: : out Cur Buf (" Conpi | ed conparat or:\n$gencnp\n");

return $conpare;

}

Thieoption “fields” isgone, and the code generation has moved into the method genConpar i son() , that getscalled for
each query. I've inserted the sending back of the comparison source code at the end of it, to make it easier to understand.
Obvioudly, if this code were used in production, this would have to be commented out, and maybe some better option
added for debugging. An example of the output is:

t W ndow, OP_I NSERT, 1, AAA, 10, 10
t W ndow, OP_I| NSERT, 3, AAA, 20, 20
t W ndow, OP_I| NSERT, 4, BBB, 20, 20
gW ndow, OP_I NSERT

Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return 1; # all succeeded
}
gW ndow. out , OP_| NSERT, 1, AAA 10, 10
gW ndow. out , OP_| NSERT, 3, AAA, 20, 20
gW ndow. out , OP_| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NCP, , , ,
t W ndow, OP_I| NSERT, 5, AAA, 30, 30
gW ndow, OP_I NSERT, 5, AAA, 0, 0
Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return 0 if ($_[0]->get("synbol")
ne $_[1]->get("synbol"));
return O if ($_[0]->get("id")
I'=$_[1]->get("id"));
return 1; # all succeeded
}
gW ndow. out , OP_I| NSERT, 5, AAA, 30, 30
gW ndow. out , OP_NCP, , , ,
gW ndow, OP_| NSERT, 0, , 20,0
Conpi | ed conparator:

sub # ($query, $data)
{
use strict;
return O if ($_[0]->get("price")
1= $ [1]->get("price"));
return 1; # all succeeded

}
gW ndow. out , OP_I NSERT, 3, AAA, 20, 20

Code generation in the templates 135

gW ndow. out , OP_I| NSERT, 4, BBB, 20, 20
gW ndow. out , OP_NOPR, , , ,

Thefirst query contains no filter fields, so the function compiles to the constant 1. The second query hasthe fieldsid and
symbol not empty, so the filtering goes by them. The third query has only the price field, and it is used for filtering.

The code generation on the fly is a powerful tool and is used throughout Triceps.

10.7. Result projection in the templates

The other functionality provided by the Triceps::Fields is the filtering of the fields in the result row type, also known as
“projection”. Y ou can select which fields you want and which you don't want, and rename the fields.

To show how it's done, | took the Query3 example from Section 10.5: “ Template options” (p. 124) and added the result
field filtering to it. I've aso changed the format in which it returns the resultsto pr i nt P() , to show the field names and
make the effects of the field renaming visible.

package Query7;

sub CLONE_SKIP { 1; }

sub new # ($cl ass, $optionNane => $optionValue ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {
name => [undef, \&Triceps::Opt::ck_mandatory],
table => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck ref(@,
"Triceps::Table") } 1],
resultFields => [undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY', ""); }],
b@);

ny $nane = $sel f->{nane};

ny $table = $sel f->{table};

ny $unit tabl e->getUnit();
ny $rtin t abl e- >get RowType() ;
ny $rtQut = $rtin;

=%
=%

if (defined $self->{resultFields}) {
ny @nFields = $rtln->getFiel dNanes();
ny @airs = &Triceps::Fields::filterToPairs($class, \@nFields, $self-
>{resul tFields});
($rtQut, $self->{projectFunc}) = &Triceps::Fields::mkeTransl ation(
rowTypes => [$rtin],
filterPairs => [\@airs],
)
} else {
$sel f->{project Func} = sub {
return $_[0];
}
}

$sel f->{unit} = $unit;

$sel f->{nane} = $nane;

$sel f->{inLabel} = $unit->nakeLabel ($rtIn, $name . ".in", undef, sub {
This version ignores the row contents, just dunps the table.
ny ($label, $rop, $self) = @;

136 Templates

ny $rh = $sel f->{tabl e}->begin();
for (i !'$rh->isNull(); $rh = $rh->next()) {
$sel f->{unit}->call(
$sel f - >{ out Label } - >nakeRowop(" OP_I NSERT",
&{ $sel f->{proj ect Func}}($rh->getRow())));

}
The end is signaled by OP_NOP with enpty fields.
$sel f->{unit}->makeArrayCal |l ($sel f->{out Label}, "OP_NOP");
}, $self);
$sel f->{out Label } = $unit->makeDumryLabel ($rtQut, $nanme . ".out");

bl ess $sel f, $cl ass;
return $sel f;

}

sub getl nputLabel # ($self)

ny $self = shift;
return $sel f->{inLabel };

}

sub get Qut put Label # ($self)

ny $self = shift;
return $sel f->{out Label };

}

sub get Nane # ($sel f)

ny $self = shift;
return $sel f->{nane};

}
package main

ny $uTrades = Triceps:: Unit->new"uTrades");

ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "tW ndow');

ny $query = Query7->new(table => $t W ndow, nane => "qW ndow"',
resultFields => ['lid, 'size/lot_$&, '.*" 1],

)

print in the tokenized format

ny $srvout = $uTrades->makelLabel ($query- >get Qut put Label () - >get Type(),
$quer y- >get Qut put Label ()->get Name() . ".serverQut", undef, sub {

&Triceps:: X :SinpleServer::outCurBuf ($_[1]->printP() . "\n");

1)

$quer y- >get Qut put Label () ->chai n($srvout);

ny %di spatch;

$di spat ch{$t W ndow >get Nane()} = $t W ndow- >get | nput Label () ;

$di spat ch{$query->get Name()} = $query->getl| nput Label ();

$di spatch{"exit"} = &Triceps:: X :SinpleServer:: makeExitLabel ($uTrades, "exit");

Triceps:: X :DunbCient::run(\%i spatch);

The query now has the new option “resultFields’ that defines the projection. That option accepts a reference to an array
of pattern strings. If present, it gives the patterns of the fields to let through. The patterns may be either the explicit field
names or regular expressions implicitly anchored at both front and back. Thereis also abit of extramodification possible:

I pattern
Skip the fields matching the pattern.

Result projection in the templates 137

pattern / substitution
Pass the matching fields and rename them according to the substitution.

Sointhisexample['!'id', 'size/lot_$& , '.*'] means skipthefield “id", rename the field “size” by
prepending “lot_" to it, and pass through the rest of the fields. In the renaming pattern, $& is the reference to the whole
origina field name. If you use the parenthesised groups, they are referred to as $1, $2 and so on. But if you use any of
those, don't forget to put the pattern into single quotes to prevent the unwanted expansion in the double quotes before the
projection gets a chance to see it.

For an example of why the parenthesised groups can be useful, suppose that the row type has multiple account-related el e-
mentsthat all start with “acct”: acct src,accti nt er nal ,acct ext er nal . Suppose we want to insert an underscore
after “acct”. This can be achieved with the pattern ' acct (. *)/acct _$1' . Asusua in the Perl regexps, the parenthe-
sised groups are numbered left to right, starting with $1.

If a specification element refers to aliteral field, like here “id” and “size”, the projection checks that the field is actually
present in the original row type, catching the typos. For the general regular expressionsit doesn't check whether the pattern
matched anything. It's not difficult to check but that would preclude the reuse of the same patterns on the varying row
types, and I'm not sure yet, what is more important.

The way this whole thing works is that each field gets tested against each pattern in order. The first pattern that matches
determines what happens to this field. If none of the patterns matches, the field gets ignored. An important consequence
about the skipping patterns is that they don't automatically pass through the non-matching fields. You need to add an
explicit positive pattern at the end of the list to pass the fields through. ' . *' servesthis purpose in the example.

A consequenceis that the order of the fields can't be changed by the projection. They are tested in the order they appear in
the original row type, and are inserted into the projected row type in the same order.

Another important point is that the field names in the result must not duplicate. It would be an error. Be careful with the
substitution syntax to avoid creating the duplicate names.

A run example from this version, with the same input as before;

t W ndow, OP_I NSERT, 1, AAA 10, 10

t W ndow, OP_I| NSERT, 3, AAA, 20, 20

gW ndow, OP_| NSERT

gW ndow. out OP_I NSERT synbol =" AAA" price="10" |ot_size="10"
gW ndow. out OP_I NSERT synbol =" AAA" price="20" |ot_size="20"
gW ndow. out OP_NOP

t W ndow, OP_I| NSERT, 5, AAA, 30, 30

gW ndow, OP_| NSERT

gW ndow. out OP_I NSERT synbol =" AAA" price="20" |ot_size="20"
gW ndow. out OP_I NSERT synbol =" AAA" price="30" |ot_size="30"
gW ndow. out OP_NOP

The rows returned are the same, but projected and printed in the pr i nt P() format.
Inside the template the projection worksin three steps:

e Triceps::Fields::filterToPairs() doestheprojection of the field names and returns its result as an array
of names. The namesin thearray go in pairs. the old name and the new name in each pair. Thefieldsthat got skipped do
not get included inthelist. Inthisexamplethearray wouldbe("synbol ", "synbol ", "price", "price",
"size", "lot_size").

e Triceps::Fields::mkeTransl ati on() thentakesthisarray along with the original row type and produces
the result row type and afunction reference that does the projection by converting an original row into the projected one.

» Thetemplate execution then calls this projection function for the result rows.

The split of work betweenfi | t er ToPai rs() and nakeTr ansl ati on() has been done partially historically and
partially because sometimes you may want to just get the pair names array and then use them on your own instead of

138 Templates

caling makeTr ansl ati on() . There is one more function that you may find useful if you do the handling on your
own: filter().Ittakesthe samearguments and doesthe samethingasfi | t er ToPai r s() but returnstheresultina
different format. It's still an array of strings but it contains only the names of the translated field namesinstead of the pairs,
in the order matching the order of the original fields. For the fields that have been skipped it contains an undef . For this
exampleit wouldreturn (undef, "synbol", "price", "lot_size").

Thecallsare:

@ields = &Triceps::Fields::filter(
$caller, \@nFields, \@ranslation);

@airs = &Triceps::Fields::filterToPairs(
$caller, \@nFields, \@ranslation);

($rowType, $projectFunc) = &Triceps:: Fiel ds::makeTransl ati on(
$opt Name => $opt Val ue, ...);

All of them confess on errors, and the argument $cal | er isused for building the error messages. The options of make-
Transl ations() are

“rowTypes’ isareferenceto an array of original row types. “filterPairs’ isareferenceto an array of filter pair arrays. Both
of these options are mandatory. And that'sright, makeTr ansl at i ons() can accept and merge more than one original
row type, with a separate projection specification for each of them. It's not quite asflexible as1'd want it to be, not allowing
to reorder and mix thefieldsfrom different originals (now the fields go in sequence: from thefirst original, from the second
original, and so on), but it's a decent start. When you combine multiple original row types, you need to be particularly
careful with avoiding the duplicate field names in the resullt.

The option “saveCodeTo” aso alows to save the source code of the generated function, same as in the Query5 example
in Section 10.6: “ Code generation in the templates’ (p. 129) .

The general call form of makeTr ansl ati ons() is:

($rowType, $projectFunc) = &Triceps:: Fields::makeTransl ati on(
rowlTypes => [$rtl1, $rt2, ..., $rtN],
filterPairs => [\@airsl, \@airs2, ..., \@airsN],
saveCodeTo => \ $codeVar,

)

One of the result type or projection function referece could have a so been returned to a place pointed to by an option, like
“saveCodeTo”, but since Perl supports returning multiple values from a function, that looks simpler and cleaner.

The projection function is then called:
$row = &$proj ect Func($ori gRowl, $ori gRow2, ..., $ori gRowN);
Naturally, makeTr ansl ati ons() isatemplateitself. Let'slook at its source code, it shows a new trick.

package Triceps:: Fields;

use Carp;
use strict;
sub nmakeTransl ation # (opt Name => optValue, ...)
{ ny $opts = {}; # the parsed options
ny $nmyname = "Triceps::Fields::mkeTransl ation";

&Triceps:: Opt::parse("Triceps::Fields", $opts, {
rowlypes => [undef, sub { &Triceps:: Opt::ck_nandatory(@);
&Triceps::Opt::ck_ref(@, "ARRAY', "Triceps::RowlType") }],
filterPairs => [undef, sub { &Triceps::Opt::ck_mandatory(@);
&Triceps:: Opt::ck _ref(@, "ARRAY', "ARRAY") }],

Result projection in the templates 139

saveCodeTo => [undef, sub { &Triceps::Opt::ck_refscalar(@) } 1],
@)

reset the saved source code
${ $opt s- >{ saveCodeTo}} = undef if (defined($opts->{saveCodeTo}));

ny $rts
ny $fps

$opt s- >{rowTypes};
$opt s->{filterPairs};

confess "$nyname: the arrays of row types and filter pairs nust be of the sanme size, got
oL ($#{Srts}+1l) . " and " . ($#{$fps}+l) . " elenents”
unl ess ($#{$rts} == $#{$fps});
ny $gencode =
sub { # (@ ows)
use strict;
use Carp;
confess "tenplate internal error in $nmyname
L ($#{Srts}+1) . ' row args, received " . ($#_+1)
unless ($#_ ==" . $#{$rts} . ');
$result_rt cones at conpile time from Triceps:: Fields::makeTransl ation
return $result_rt->makeRowArray(';

result translation expected

ny @owdef; # of the result row type
for (my $i = 0; $i <= $#{Prts}; $i++) {
ny %origdef = $rts->[$i]->getdef();
ny @p = @$fps->[$i]}; # copy the array, because it will be shifted
while ($#fp >= 0) {
ny $from= shift @p;
ny $to = shift @p;
ny $type = $origdef{$fron};
confess "$nynane: unknown original field '$from in the original rowtype $i:\n"
$rts->[$i]->print() . " "
unl ess (defined $type);
push(@ owdef, $to, $type);
$gencode . ="
$[' . $i . '"]->get("" . quoteneta($from . '"),';
}

}

$gencode . =
)
s

ny $result_rt = Triceps::w apfess
"$nynane: Invalid result row type specification:",
sub { Triceps:: RowlType->new @ owdef); };

${ $opt s- >{ saveCodeTo}} = $gencode if (defined($opts->{saveCodeTo}));

conpile the translation function
ny $func = eval $gencode
or confess "$nynane: error in conpilation of the generated function:\n $@unction
text:\n"
Triceps:: Code: : nunal i gn($gencode, " ") . "\n";

return ($result_rt, $func);

}

By now almost all the parts of the implementation should look familiar to you. It builds the result row definition and the
projection function code in parallel by iterating through the originals. An interesting trick is done with passing the result

140 Templates

row type into the projection function. The function needs it to create the result rows. But it can't be easily placed into the
function source code. So the closure property of the projection function is used: whatever outside “my” variables occur
in the function at the time when it's compiled, will have their values compiled hardcoded into the function. So the “my”
variable $resul t _rt is set with the result row type, and then the projection function gets compiled. The projection
function refersto $r esul t _rt , which gets picked up from the parent scope and hardcoded in the closure.

The computation of the $r esul t _rt iswrapped in the enhanced error reporting, more on that below in Section 10.8:
“Error reporting in the templates” (p. 141) .

10.8. Error reporting in the templates

When writing the Triceps templates, it's always good to make them report any usage errors in the terms of the template
(though the extra detail doesn't hurt either). That is, if atemplate builds a construction out of the lower-level primitives,
and one of these primitives fails, the good approach is to not just pass through the error from the primitive but wrap it
into a high-level explanation.

When the errors are reported like the exceptions, which meansin Perl by di e() or conf ess() , thisisnot that easy to do
well. The basic handling is easy, there isjust no need to do anything to let the exception propagate up, but adding the extra
information becomes difficult. First, you've got to explicitly check for these errors by catching them with eval () , and
only then can you add the extrainformation and re-throw. And then thereisthis pesky problem of the stack traces: if there-
throw usesconf ess(), itwill likely add aduplicate of at least apart of the stack trace that came with theunderlying error,
andif it usesdi e() , the stack trace might be incomplete since the native XS code in Tricepsincludes the stack trace only
tothenearest eval () to prevent the same problem when unrolling the stacks mixed between Perl and Triceps scheduling.

Triceps providesaready solutionfor this, thefunction Tr i ceps: : wr apf ess() that doeseverythingright. Thissolution
is not even limited to Triceps, it can be used with any kind of Perl programs. It has been used in the examples above,
and looks as follows:

ny $result_rt = Triceps::wapfess
"$nynane: Invalid result row type specification:",
sub { Triceps:: Rowlype->new @owdef); };

The function Tri ceps: : wr apf ess() isvery much like the try/catch, only it has the hardcoded catch logic that adds
the extra error information and then re-throws the exception.

Its first argument is the error message that describes the high-level problem. This message will get prepended to the error
report when the error propagates up (and the original error message will get a bit of extra indenting, to nest under that
high-level explanation).

The second argument isthe code that might throw an error, like thetry-block. Theresult from that block gets passed through
astheresult of wr apf ess() .

The full error message might look like this:

Triceps::Fields::makeTransl ation: Invalid result row type specification:
Triceps:: RowType::new. incorrect specification:
duplicate field name 'f1' for fields 3 and 2
duplicate field name 'f2' for fields 4 and 1
Triceps:: RowType: :new. The specification was: {
f2 => int32[]
fl => string
fl => string
f2 => float64[]
} at blib/lib/Triceps/Fields.pmline 209.
Triceps::Fields::__ANON__ called at blib/lib/Triceps.pmline 192
Triceps::wapfess(' Triceps::Fields::mkeTranslation: Invalid result row type spe...",
' CODE(0x1c531e0)') called at blib/lib/Triceps/Fields.pmline 209
Triceps:: Fields::makeTransl ati on(' rowTypes', 'ARRAY(0x1c533d8)', 'filterPairs',
" ARRAY(0x1c53468)') called at t/Fields.t line 186

Error reporting in the templates 141

eval {...} called at t/Fields.t line 185
It contains both the high-level and the detailed description of the error, and the stack trace.

The stack trace doesn't get indented, no matter how many times the message gets wrapped. W apf ess() usesadightly
dirty trick for that: it assumes that the error messages are indented by the spaces while the stack trace from conf ess()
isindented by a single tab character. So the extra spaces of indenting are added only to the linesthat don't start with a tab.

Note also that even though wr apf ess() useseval () ,thereisnoeval aboveitinthe stack trace. That's the other part
of the magic: since that eval is not meaningful, it gets cut from the stack trace, and wr apf ess() aso usesit to find
its own place in the stack trace, the point from which a simple re-confession would dump the duplicate of the stack. So
it cutsthe eval and everything under it in the original stack trace, and then does its own confession, inserting the stack
trace again. This works very well for the traces thrown by the XS code, which actually doesn't write anything below that
eval ; w apf ess() then addsthe missing part of the stack.

Wrapfess() can do a bit more, $message may be either a string or a code reference, or a reference to a scalar variable
containing either. The detauls of that are explained in Section 19.1: “Top-level functions reference” (p. 361) .

142 Templates

Chapter 11. Aggregation
11.1. The ubiquitous VWAP

Every CEP supplier loves an example of VWAP calculation: it's small, it's about that quintessential CEP activity: aggre-

gation, and it sounds like something from the real world.

A quick sidebar: what isthe VWAP? It'sthe Vaue-Weighted Average Price: the average price for the shares traded during
some period of time, usualy a day. If you take the price of every share traded during the day and calculate the average,
you get the VWARP. What is the value-weighted part? The shares don't usually get sold one by one. They're sold in the
variable-sized lots. If you think in the terms of lots and not individual shares, you have to weigh the trade prices (not to be

confused with costs) for the lots proportional to the number of sharesin them.

I'vebeen using VWAPfor trying out the different approachesto the aggregation. There are multiplewaysto doit, from fully
manual, to the aggregator infrastructure with manual computation of the aggregations, to the simple aggregation functions.
The cutest version of VWAP so far isimplemented as a user-defined aggregation function for the SimpleAggregator. Here

ishow it goes:

VWAP function definition
ny $nyAggFunctions = {
myvwap => {

vars => { sum=> 0, count => 0, size => 0, price => 0 },

step => ' ($%i ze, $%price) = @Yargiter;
"if (defined $%ize && defined $%price)

"{$%ount += $%ize; $¥%um += $%ize * $%rice;}"',

result =>"'($%ount == 0? undef : $%um/ $%ount)',
}s
s

ny $uTrades = Triceps:: Unit->new"uTrades");

the input data
ny $rtTrade = Triceps:: RowType- >new
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64"
size => "float64", # nunber of shares traded

)

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)

- >addSubl ndex(" bySynbol "
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
->addSubl ndex("fifo", Triceps::|ndexType->newrifo())

)

the aggregation result
ny $rtWwap;
ny $conpText; # for debuggi ng

Tri ceps: : Si nmpl eAggr egat or: : nake(
tabType => $tt W ndow,
name => "aggr Vwap",
idxPath => ["bySynbol", "fifo"],
result => |

143

symbol => "string", "last", sub {$_[0]->get("synmbol");},
id=>"int32", "last", sub {$_[0]->get("id");},
volunme => "float64", "suni', sub {$_[O]->get("size");},
vwap => "float64", "nyvwap", sub { [$_[O]->get("size"), $_[O]->get("price")];},
1
functions => $nyAggFuncti ons,
saveRowTypeTo => \ $rt VWwap,
saveConput eTo => \ $conpText,

)

$ttWndow >initialize();
ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "tW ndow');

label to print the result of aggregation
ny $l bPrint = $uTrades->nmakelLabel ($rtVWwap, "IbPrint",
undef, sub { # (label, rowop)
print($_[1]->printP(), "\n");

1)
$t W ndow >get Aggr egat or Label (" aggr Vwap") - >chai n($! bPrint);

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/); # starts with a string opcode
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
$uTrades->drai nFrane(); # just in case, for conpleteness

}

The aggregators get defined as parts of the table type. Tri ceps: : Si npl eAggr egat or: : make() isakind of a
template that adds an aggregator definition to the table type that is specified in the option “tabType” . An aggeragtor doesn't
livein avacuum, it alwaysworks as a part of the table type. Asthe table gets modified, the aggregator a so re-computesits
aggregation results. The fine distinction isthat the aggregator is a part of the table type, and is common for all the tables of
thistype. But the table stores its aggregation state, and when an aggregator runs on atable, it uses and modifies that state.

The name of the aggregator is how you can find its result later in the table: each aggregator has an output label created for
it, that can befound with $t abl e- >get Aggr egat or Label () . Theoption “idxPath” defines both the grouping of the
rows for this aggregator and their order in the group. The index type at the path determines the order and its parent defines
the groups. In this case the grouping happens by symbol, and the rows in the groups go in the FIFO order. This means that
the aggregation function | ast will be selecting the row that has been inserted last, in the FIFO order.

The option “result” defines both the row type of the result and the rules for its computation. Each field is defined there
with four elements: name, type, aggregation function name, and the function reference to select the value to be aggregated
from the row. Triceps provides a bunch of pre-defined aggregation functionslikefi rst,| ast,sumcount, avg and
so on. But VWAP is not one of them (well, maybe now it should be, but then this example would be less interesting). Not
to worry, the user can add custom aggregation functions, and that's what this example does.

The option “functions’ contains the definitions of such user-defined aggregation functions. Here it defines the function
myvwap. It defines the state variables that will be used to keep the intermediate values for a group, a step computation,
and the result computation. Whenever the group changes, the aggregator will reset the state variables to the default values
and iterate through the new contents of the group. It will perform the step computation for each row and collect the datain
the intermediate variables. After theiteration it will perform the result computation and produce the final value.

The VWAP computation in aweird one, taking two fields as arguments. Thesetwo fields get packed into an array reference
by
sub { [$_[0]->get("size"), $ [0]->get("price")];}

and then the step computation unpacks and handles them. In the aggregator computations the syntax $%mane refers to
the intermediate variables and aso to a few pre-defined ones. $%ar gi t er is the value extracted from the current row
during the iteration.

144 Aggregation

And that's pretty much it: send the rows to the table, the iterator state gets updated to match the table contents, computes
the results and sends them. For example:

OP_I NSERT, 11, abc, 123, 100

t W ndow. aggr Vwap OP_I NSERT synbol ="abc" id="11" vol unme="100"
vwap="123"

OP_I NSERT, 12, abc, 125, 300

t W ndow. aggr Vwap OP_DELETE synbol ="abc" id="11" vol unme="100"
vwap="123"

t W ndow. aggr Vwap OP_I NSERT synbol ="abc" id="12" vol unme="400"
vwap="124. 5"

OP_I NSERT, 13, def, 200, 100

t W ndow. aggr Vwap OP_I NSERT synbol ="def" id="13" vol unme="100"
vwap="200"

OP_I| NSERT, 14, f gh, 1000, 100

t W ndow. aggr Vwap OP_I NSERT synbol ="fgh" id="14" vol unme="100"
vwap="1000"

OP_I NSERT, 15, abc, 128, 300

t W ndow. aggr Vwap OP_DELETE synbol ="abc" id="12" vol unme="400"
vwap="124. 5"

t W ndow. aggr Vwap OP_I NSERT synbol ="abc" id="15" vol unme="700"
vwap="126"

OP_I NSERT, 16, f gh, 1100, 25

t W ndow. aggr Vwap OP_DELETE synbol ="fgh" id="14" vol unme="100"
vwap="1000"

t W ndow. aggr Vwap OP_I NSERT synbol ="fgh" id="16" vol unme="125"
vwap="1020"

OP_I NSERT, 17, def, 202, 100

t W ndow. aggr Vwap OP_DELETE synbol ="def" id="13" vol unme="100"
vwap="200"

t W ndow. aggr Vwap OP_I NSERT synbol ="def" id="17" vol unme="200"
vwap="201"

OP_I| NSERT, 18, def, 192, 1000

t W ndow. aggr Vwap OP_DELETE synbol ="def" id="17" vol unme="200"
vwap="201"

t W ndow. aggr Vwap OP_I NSERT synbol ="def" id="18" vol une="1200"
vwap="193. 5"

When agroup gets modified, the aggregator first sendsa DEL ETE of the old contents, then an INSERT of the new contents.
But when the first row getsinserted in agroup, thereis nothing to delete, and only INSERT is sent. And the opposite, when
the last row is deleted from a group, only the DELETE is sent.

After this highlight, let'slook at the aggregators from the bottom up.

11.2. Manual aggregation

The table exanmple in Section 9.7: “Secondary indexes’ (p. 92) prints the aggregated information (the average price
of two records). This can be fairly easily changed to put the information into the rows and send them on as labels. The
function pri nt Aver age() has morphed into conmput eAver age() , while the rest of the example stayed the same
and is omitted:

our $rtAvgPrice = Triceps:: RowType->new

synbol => "string", # synbol traded

id=>"int32", # last trade's id

price => "float64", # avg price of the last 2 trades

)

place to send the average: could be a dumy | abel, but to keep the
code snuller also print the rows here, instead of in a separate | abel
our $l bAverage = $uTrades- >nakelLabel ($rt AvgPrice, "Il bAverage",

Manual aggregation 145

undef, sub { # (label, rowop)
print($_[1]->printP(), "\n");
1)

Send the average price of the synbol in the last nodified row
sub conput eAverage # (row)

{

}

return unl ess defined $rlLast Mod;
nmy $rhFirst = $t W ndow >findl dx($itSynbol, $rlLastMd);
ny $rhEnd = $rhFirst->next G oupl dx($itLast?2);
print("Contents:\n");
ny $avg = O;
ny ($sum $count);
ny $rhLast;
for (my $rhi = $rhFirst;
1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {

print(" ", $rhi->getRowm)->printP(), "\n");
$rhLast = $rhi;
$count ++;

$sum += $rhi - >get Row() - >get ("pri ce");

}
if ($count) {
$avg = $suni $count ;
$uTr ades->cal | ($l bAver age- >makeRowop(&Tri ceps: : OP_I NSERT,
$rt AvgPri ce- >makeRowHash(
synbol => $rhLast - >get Rowm) - >get (" synbol "),
id => $rhLast->get Row()->get ("id"),
price => $avg
)
));
}

whi | e(<STDI N>) {

}

chonp;

ny @ata = split(/,/);

$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
&conput eAver age() ;

undef $rlLastMd; # clear for the next iteration
$uTrades->drai nFrane(); # just in case, for conpleteness

For the demonstration, the aggregated rows sent to $I bAver age get printed. The rows being aggregated are printed
during theiteration too, indented after “Contents.”. And hereis a sample run'sresult, with the input records shown in bold:

OP_I NSERT, 1, AAA, 10, 10
Content s:

i d="1" synbol =" AAA" price="10" size="10"

| bAver age OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Content s:

i d="1" synbol =" AAA" price="10" size="10"
i d="3" synbol =" AAA" price="20" size="20"

| bAver age OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
Content s:

id="3" synbol =" AAA" price="20" size="20"
i d="5" synbol =" AAA" price="30" size="30"

| bAver age OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3
Content s:

i d="5" synbol =" AAA" price="30" size="30"

146 Aggregation

| bAver age OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5
Cont ent s:

There are a couple of things to notice about it: it produces only the INSERT rowops, no DELETES, and when the last
record of the group is removed, that event produces nothing.

Thefirst itemismildly problematic because the processing downstream from here might not be able to handle the updates
properly without the DELETE rowops. It can be worked around fairly easily by connecting another table to store the ag-
gregation results, with the same primary key asthe aggregation key. That table would automatically transform the repeated
INSERTSs on the same key to a DELETE-INSERT sequence.

The second item is actually pretty bad because it means that the last record deleted gets stuck in the aggregation results.
The Coral8 solution for this situation isto send arow with all non-key fields set to NULL, to reset them (interestingly, it's
arelatively recent addition, that bug took Coral8 years to notice). But with the opcodes available, we can as well send a
DELETE rowop with the key fields filled, the helper table will fill in the rest of the fields, and produce a clean DELETE.

All this can be done by the following changes. Add the table, remember itsinput label in $I bAvgPr i ceHel per . It will
be used to send the aggregated rows instead of $t AvgPr i ce. Then still use $t AvgPr i ce to print the records coming
out, but now connect it after the helper table. Andin conput eAver age() changethe destination label and add the case
for when the group becomes empty ($count == 0). Therest of the example stays the same.

our $rtAvgPrice = Triceps:: RowType->new

synbol => "string", # synbol traded

id=>"int32", # last trade's id

price => "float64", # avg price of the last 2 trades

)

our $ttAvgPrice = Triceps:: Tabl eType->new $rt AvgPri ce)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
)

$ttAvgPrice->initialize();
our $t AvgPrice = $uTrades->nakeTabl e($tt AvgPrice, "tAvgPrice");
our $l bAvgPri ceHel per = $t AvgPri ce->get | nput Label ();

place to send the average: could be a dumy | abel, but to keep the
code snuller also print the rows here, instead of in a separate | abel
our $l bAverage = nakePrintLabel ("I bAverage", $tAvgPrice->get QutputLabel ());

Send the average price of the synbol in the last nodified row
sub conput eAverage2 # (row)
{

return unl ess defined $rLast Mod;

nmy $rhFirst = $t W ndow >findl dx($itSynbol, $rlLastMd);

ny $rhEnd = $rhFirst->next G oupl dx($itLast?2);

print("Contents:\n");

ny $avg = O;

ny ($sum $count);

ny $rhLast;

for (my $rhi = $rhFirst;

1 $r hi - >sanme($rhEnd); $rhi = $rhi->nextldx($itLast2)) {

print(" ", $rhi->getRow()->printP(), "\n");
$rhLast = $rhi;
$count ++;

$sum += $rhi - >get Row() - >get ("pri ce");

}
if ($count) {
$avg = $suni $count ;
$uTr ades- >makeHashCal | ($| bAvgPri ceHel per, &Triceps:: OP_I NSERT,

Manual aggregation 147

synbol => $rhLast - >get Rowm) - >get (" synbol "),
id => $rhLast->get Row()->get("id"),
price => $avg
)
} else {
$uTr ades- >nakeHashCal | ($| bAvgPri ceHel per, &Triceps:: OP_DELETE,
synbol => $rLast Mbd- >get ("synbol "),
)
}
}

The change is straightforward. Thelabel $I bAver age now revertsto just printing the rowops going through it, so it can
be created with the template rakePr i nt Label () described in Section 10.3: “ Simple wrapper templates’ (p. 119) .

Then the output for the same input becomes:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:

id="1" synbol =" AAA" price="10" size="10"
t AvgPrice. out OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:

id="1" synbol =" AAA" price="10" size="10"

id="3" synbol =" AAA" price="20" size="20"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="1" price="10"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
Cont ent s:

id="3" synbol =" AAA" price="20" size="20"

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="3" price="15"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3
Cont ent s:

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5" price="25"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5
Cont ent s:
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5" price="30"

All fixed, the proper DELETEs are coming out. The last line shows the empty group contentsin the table but the DELETE
row is still coming out.

Why should we worry so much about the DELETES? Because without them, relying on just INSERTSs for updates, it's
easy to create bugs. The last example still has an issue with handling the row replacement by INSERTS. Can you spot it
from reading the code?

Here isrun example that highlights the issue (as usua, the input lines are in bold):

OP_I NSERT, 1, AAA, 10, 10
Content s:

id="1" synbol ="AAA" price="10" size="10"
t AvgPrice. out OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Content s:

id="1" synbol =" AAA" price="10" size="10"

i d="3" synbol =" AAA" price="20" size="20"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="1" price="10"
t AvgPrice. out OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
Content s:

148 Aggregation

i d="3" synbol ="AAA" price="20" size="20"

i d="5" synbol =" AAA" price="30" size="30"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="3" price="15"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="5" price="25"
OP_I NSERT, 5, BBB, 30, 30
Contents

i d="5" synbol ="BBB" price="30" size="30"
t AvgPrice. out OP_I NSERT symbol ="BBB" id="5" price="30"
OP_I NSERT, 7, AAA, 40, 40
Contents

i d="3" synbol ="AAA" price="20" size="20"

id="7" synbol ="AAA" price="40" size="40"
t AvgPri ce. out OP_DELETE synbol =" AAA" id="5" price="25"
t AvgPri ce. out OP_I NSERT synbol =" AAA" id="7" price="30"

The row with id=5 has been replaced to change the symbol from “AAA” to “BBB”. This act changes both the groups
of “AAA” and of “BBB”, removing the row from the first one and inserting it into the second one. Y et only the output
for “BBB” came out. The printout of the next row with id=7 and symbol="AAA” shows that the row with id=5 has been
indeed removed from the group “AAA”. It even corrects the result. But until that row camein, the average for the symbol
“AAA” remained unchanged and incorrect.

There are multiple ways to fix thisissue but first it had to be noticed. Which requires alot of attention to detail. It's much
better to avoid these bugs in the first place by sending the clean and nice input.

11.3. Introducing the proper aggregation

Since the manual aggregation is error-prone, Triceps can manage it for you and do it right. The only thing you need to do
is do the actud iteration and computation. Here is the rewrite of the same example with a Triceps aggregator:

ny $uTrades = Triceps:: Unit->new"uTrades");

the input data
ny $rtTrade = Triceps:: RowType- >new
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded

)

the aggregation result

ny $rtAvgPrice = Triceps:: RowType- >new(

synbol => "string", # synbol traded

id=>"int32", # last trade's id

price => "float64", # avg price of the last 2 trades

)

aggregation handler: recal cul ate the average each tine the easy way
sub conput eAveragel # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==
| | $opcode == &Triceps:: OP_NOP);

ny $sum= 0
ny $count = O;
for (nmy $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next ($rhi)) {
$count ++;

Introducing the proper aggregation 149

$sum += $rhi - >get Row() - >get ("price");

}
ny $rlLast = $context->last()->get Row();
ny $avg = $sum $count ;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rLast->get ("synbol "),

id => $rLast->get("id"),

price => $avg

)
$cont ext - >send($opcode, $res);

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragel)
)
)
)

$ttWndow >initialize();
ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "t W ndow');

label to print the result of aggregation
ny $l bAverage = nakePrintLabel ("I bAver age",
$t W ndow >get Aggr egat or Label ("aggr AvgPrice"));

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/); # starts with a string opcode
$uTr ades- >nmakeArrayCal | ($t W ndow >get | nput Label (), @lata);
$uTrades->drai nFrane(); # just in case, for conpleteness

}

What has changed in this code? The things got rearranged a bit. The aggregator is now defined as a part of the table type,
so the aggregation result row type and its computation function had to be moved up.

The AggregatorType object holds the information about the aggregator. In the table type, the aggregator type gets attached
to anindex typewith set Aggr egat or () . Inthis case, to the FIFO index type. The parent of that index type determines
the aggregation groups, grouping happening by its combined key fields (that is, all the key fields of al the indexesin the
path starting from the root). For aggregation the working or non-working method get Key () doesn't matter, so any of the
Hashed, Ordered and Sorted index types can be used. The index type where the aggregator type is attached determines the
order of the rowsin the groups. If you use FIFO, the rows will be in the order of arrival. If you use Ordered or Sorted, the
rows will be in the sort order. If you use Hashed, the rows will be in some random order, which is not particularly useful.

At present an index type may have no more than one aggregator type attached to it. There is no particular reason for
that, other than that it was slightly easier to implement, and that | can't think yet of a real-word situation where multiple
aggregators on the same index would be needed. If this situation will ever occur, this support can be added. However a
table type may have multiple aggregator typesin it, on different indexes. Y ou can save a reference to an aggregator type
in a variable and reuse it in the different table types too (though not multiple times in the same table, since that would
cause a naming conflict).

The aggregator type is created with the arguments of

150 Aggregation

result row type,

* aggregator name,

group initialization Perl function (which may be undef , asin this example),

 group computation Perl function or source code snippet,

the optional arguments for the functions.

Note that there is a difference in naming between the aggregator types and index types. an aggregator type knows its name,
while an index type does not. An index type is given a name only in its hierarchy inside the table type, but it does not
know its name.

When atable is created, it finds all the aggregator typesin it, and creates an output label for each of them. The names of
the aggregator types are used as suffixes to the table name. In this exampl e the aggregator will haveits output label named
“tWindow.aggrAvgPrice’. This puts all the aggregator types in the table into the same namespace, so make sure to give
them different names in the same table type. Also avoid the names “in”, “out” and “pre” because these are already taken
by the table's own labels. The aggregator labels in the table can be found with

$agglLabel = $t abl e- >get Aggr egat or Label (" aggNanme") ;

The aggregator types are theoretically multithreaded but the way the Perl threads work, the Perl code has to be recompiled
fromthe source codein each thread. So for atabletypewith aggregatorsto be exportableto the other threads, the aggregators
must have their logic specified as the Perl source code, not a compiled Perl function.

After thelogic is moved into a managed aggregator, the main loop becomes simpler.

The computation function gets alot more arguments than it used to. The most interesting and most basic ones are $con-
t ext , $opcode, and $r h. Therest are useful in the more complex cases only.

The aggregator typeis exactly that: atype. It doesn't know, on which table or index, or evenindex typeit will be used. And
indeed, it might be used on multiple tables and index types. But to do the iteration on the rows, the computation function
needs to get this information somehow. And it does, in the form of aggregator context. The manual aggregation used the
last table output row to find, on which exact group to iterate. The managed aggregator gets the last modified row handle as
the argument $r h. But our simple aggregator doesn't even need to consult $r h because the context takes care of finding
the group too: it knows the exact group and exact index that needs to be aggregated (look at the index tree drawings in
Section 9.10: “Theindex tree” (p. 101) for the difference between an index type and an index).

The context providesitsownbegi n() andnext () methods. They areactually slightly more efficient than the usual table
iteration methods because they take advantage of that exact known index. The most important part, they work differently.

$rhi = $cont ext->next ($rhi);

returns a NULL row handle when it reaches the end of the group. Do not, | repeat, DO NOT use the $r hi - >next ()
in the aggregators, or you'll get some very wrong results.

The context also has a bit more of its own magic.

$rh = $context->last();

returns the last row handle in the group. This comes very handy because in most of the cases you want the data from the
last row to fill the fields that haven't been aggregated as such. This is like the SQL function LAST() . Using the fields
from the argument $r h, unless they are the key fields for this group, is generally not a good idea because it adds an extra
dependency on the order of modificationsto thetable. TheFI RST() or LAST() (i.e. thecontext'sbegi n() orl ast())
are much better and not any more expensive.

$si ze = $cont ext - >groupSi ze() ;

Introducing the proper aggregation 151

returns the number of rows in the group. It's your value of COUNT(*) in SQL terms, and if that's al you need, you don't
need to iterate.

$cont ext - >send($opcode, $row);

constructs a result rowop and sends it to the aggregator's output label. Remember, the aggregator type as such knows
nothing about this label, so the path through the context is the only path. Note also that it takes a row and not a rowop,
because alabel is needed to construct the rowop in the first place.

$rt = $context->resul t Type();

provides the result row type needed to construct the result row. There also are a couple of convenience methods that
combine the row construction and sending, that can be used instead:

$cont ext - >makeHashSend ($opcode, $fiel dName => $fiel dvalue, ...);
$cont ext - >makeAr raySend($opcode, @i el dval ues);

The final thing about the aggregator context: it works only inside the aggregator computation function. Once the function
returns, all its methods start returning undef . So thereisno point in trying to saveit for later in aglobal variable or such,
don't do that.

Asyou can see, conput eAver age() hasthe same logic as before, only now it uses the aggregation context. And I've
removed the debugging printout of the rows in the group.

Thelast unexplained pieceisthe opcode handling and that comparison to OP_NOP. Basically, the table call sthe aggregator
computation every time something changes in its index. It describes the reason for the cal in the argument $aggop
(“aggregation operation™). Depending on how clever an aggregator wants to be, it may do something useful on al of these
occasions, or only on some of them. The simple aggregator that doesn't try any smart optimizationsbut just goesand iterates
through the rows every time only needs to react in some of the cases. To make its life easier, Triceps pre-computes the
opcode that should be used for the result and puts it into the argument $opcode. So to ignore the non-interesting calls,
the simple aggregator computation can just return if it sees the opcode OP_NOP.

Why does it also check for the group size being 0? Again, Triceps provides flexibility in the aggregators. Among other
things, it allowsto implement thelogic like Coral 8, when on deletion of the last row in the group the aggregator would send
arow with all non-key fieldsset to NULL (it can takethekey fieldsfrom theargument $r h). So for this specific purposethe
computation function gets called with all rows del eted from the group, and $opcode setto OP_I NSERT. And, by theway,
atrue Coral8-styled aggregator would ignore all the calls where the $opcode isnot OP_I NSERT. But the normal aggre-
gators need to avoid doing thiskind of crap, so they have to ignore the calls where $cont ext - >gr oupSi ze() ==0.

And hereis an example of the output from that code (as usual, the input lines are in bold):

OP_I NSERT, 1, AAA, 10, 10

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbol
t W ndow. aggr AvgPri ce OP_I NSERT synbol
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="15"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="25"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="30"

"AAA" id="1" price="10"
"AAA" id="3" price="15"

Asyou can seg, it's exactly the same as from the manual aggregation example with the helper table, minus the debugging
printout of the group contents. However here it's done without the helper table: instead the aggregation function is called
before and after each update.

152 Aggregation

This presents amemory vs CPU compromise: a hel per table uses more memory but requires less CPU for the aggregation
computations (presumably, theinsertion of therow into thetableisless computationally intensive than theiteration through
the original records).

The managed aggregators can be made to work with a helper table too: just chain a helper table to the aggregator's |abel,
and in the aggregator computation add

return if ($opcode == &Triceps:: OP_DELETE
&& $cont ext - >groupSi ze() != 1);

Thiswould skip all the DELETES except for the last one, before the group collapses.

Thereisaso away to optimize thislogic right inside the aggregator: remember the last INSERT row sent, and on DELETE
just resend the same row, as will be shown in Section 11.5: “Optimized DELETES’ (p. 157). This remembered last

state can also be used for the other interesting optimizations that will be shown in Section 11.6: “ Additive aggregation” (p.
159) .

Which approach is better, depends on the particular case. If you need to store the results of aggregation in a table for
the future look-ups anyway, then that table is no extra overhead. That's what the Aleri system does internally: since each
element initsmodel keeps a primary-indexed table (“materialized view”) of the result, that tableis used whenever possible
to generatethe DEL ETEswithout involving any logic. Or the extraoptimizationinsidethe aggregator can seriously improve
the performance on the large groups. Sometimes you may want both.

Now let'slook at the run with the same input that went wrong with the manual aggregation:

OP_I NSERT, 1, AAA, 10, 10
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="1" price="10"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="15"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="25"
OP_I NSERT, 5, BBB, 30, 30
t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="25"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="20"
t W ndow. aggr AvgPri ce OP_I NSERT synbol ="BBB" id="5" price="30"
OP_I NSERT, 7, AAA, 40, 40
t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="20"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="7" price="30"

Here it goes right. Triceps recognizes that the second INSERT with id=5 moves the row to another group. So it performs
the aggregation logic for both groups. First for the group where the row gets removed, it updates the aggregator result with
aDELETE and INSERT (note that id became 3, since it's now the last row left in that group). Then for the group where
the row gets added, and since there was nothing in that group before, it generates only an INSERT.

The handling of the fatal errors (asin di e()) in the aggregator functions is an interesting subject. The errors propagate
properly through the table, and the table operations confess with the Perl handler's error message. But since an error in the
aggregator function means that things are going very, very wrong, after that the table becomes inoperative and will die on
all the subsequent operations as well. Y ou need to be very careful in writing these functions.

11.4. Tricks with aggregation on a sliding
window

Now it al works as it should, but there is still some room for improvement, related to the way the diding window limits
are handled.

Let'slook again at the sample aggregation output with row deletion, copied here for convenience:

Tricks with aggregation on a sliding window 153

OP_I NSERT, 1, AAA, 10, 10

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="1" price="10"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="3" price="15"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="25"
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="30"

When the row with id=3 is deleted, the average price revertsto 30, which isthe price of the trade with id=5, not the average
of tradeswithid 1 and 5.

Thisis because the table is actually a sliding window, with the FIFO index having alimit of 2 rows

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
- >set Aggr egat or (Tri ceps: : Aggr egat or Type- >new(
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragel)
)
)
)

When the row with id=5 was inserted, it pushed out the row with id=1. Deleting the record with id=3 does not put that
row with id=1 back. Y ou can see the group contents in an even earlier printout with the manual aggregation, also copied
here for convenience:

OP_I NSERT, 1, AAA, 10, 10
Cont ent s:
id="1" synbol =" AAA" price="10" size="10"
| bAver age OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20
Cont ent s:
id="1" synbol ="AAA" price="10" size="10"
id="3" synbol =" AAA" price="20" size="20"
| bAver age OP_I NSERT synbol =" AAA" id="3" price="15"
OP_I NSERT, 5, AAA, 30, 30
Cont ent s:
i d="3" synbol =" AAA" price="20" size="20"
id="5" synbol =" AAA" price="30" size="30"
| bAver age OP_I NSERT synbol =" AAA" id="5" price="25"
OP_DELETE, 3
Cont ent s:
i d="5" synbol =" AAA" price="30" size="30"
| bAver age OP_I NSERT synbol =" AAA" id="5" price="30"
OP_DELETE, 5
Cont ent s:

Like the toothpaste, once out of the tube, it's not easy to put back. But for this particular kind of toothpaste thereis atrick:
keep morerowsinthegroup just in case but use only thelast few for the actual aggregation. To allow an occasional deletion
of asingle row, we can keep 3 rowsinstead of 2.

154 Aggregation

So, change the table definition:

Triceps:: I ndexType->newFi fo(linmt => 3)

and modify the aggregator function to use only the last 2 rows from the group, even if more are available:

sub comput eAverage2 # (table, context, aggop, opcode, rh, state, args...)

{
nmy ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group beconmes enpty
return if ($context->groupSi ze()==
|| $opcode == &Triceps:: OP_NOP);

my $skip = $cont ext->groupSi ze() - 2;
ny $sum = 0;
ny $count = O;
for (ny $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next($rhi)) {
if ($skip > 0) {
$ski p--;
next ;
}
$count ++;
$sum += $rhi - >get Row() - >get ("price");
}
my $rlLast = $context->l ast()->get Row();
my $avg = $suni $count;

ny $res = $context->resul t Type() - >makeRowHash(
synbol => $rlLast->get ("synbol "),
id => $rlLast->get("id"),
price => $avg

);

$cont ext - >send($opcode, $res);

}
The output from this version becomes:

OP_I NSERT, 1, AAA 10, 10
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbol
t W ndow. aggr AvgPri ce OP_I NSERT synbol

"AAA" id="1" price="10"
"AAA" id="3" price="15"

"AAA" id="3" price="15"
"AAA" id="5" price="25"

"AAA" id="5" price="25"
"AAA" id="5" price="20"

"AAA" id="5" price="20"
"AAA" id="1" price="10"

Now after OP_DELETE, 3 the average price becomes 20, the average of 10 and 30, because the row with id=1 comesinto
play again. Can you repeat that in the SQLY languages?

This version stores one extrarow and thus can handle only one deletion (until the deleted row's spot gets pushed out of the
window naturally, then it can handle another). It can not handle the arbitrary modifications properly. If you insert another
row with id=3 for the same symbol “AAA”, the new version will be placed again at the end of the window. If it was the

Tricks with aggregation on a sliding window 155

last row anyway, that isfine. But if it was not the last, asin this example, that would be an incorrect order that will produce
incorrect results.

But just change the table type definition to aggregate on a sorted index instead of FIFO and it becomes able to handle the
updates while keeping the rows in the order of their ids:

nmy $ttWndow = Triceps:: Tabl eType->new $rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: | ndexType- >newHashed(key => ["id"])
)

- >addSubl ndex(" bySynbol ",
Tri ceps:: | ndexType- >newHashed(key => ["synbol"])
- >addSubl ndex(" or der Byl d",
Tri ceps:: Si npl eOrder edl ndex->new(id => "ASC',)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAverage3)
)

)
- >addSubl ndex(" | ast 3",

Triceps::IndexType->newFi fo(limt => 3))

The FIFO index is till there, in parallel, but it doesn't determine the order of rows for aggregation any more. Here is a
sample of this version's work:

OP_I NSERT, 1, AAA, 10, 10
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 7, AAA, 40, 40

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo

"AAA" id="1" price="10"
"AAA" i d="3" price="15"

"AAA" id="3" price="15"
"AAA" id="5" price="25"

"AAA" i d="5" price="25"
"AAA" i d="5" price="20"

"AAA" i d="5" price="20"
"AAA" i d="5" price="25"

"AAA" id="5" price="25"
"AAA" id="7" price="35"

When the row with id=3 gets deleted, the average reverts to the rows 1 and 5. When the row 3 gets inserted back, the
average works on rows 3 and 5 again. Then when the row 7 isinserted, the aggregation moves up to therows 5 and 7.

The row expiration is still controlled by the FIFO index. So after the row 3 isinserted back, the order of rowsin the FIFO
becomes

1, 5, 3
Then when the row 7 isinserted, it advances to
5 3, 7

At this point, until the row 3 gets naturally popped out of the FIFQ, it's best not to have other deletions nor updates, or
the group contents may become incorrect.

The FIFO and Ordered index typeswork in parallel on the same group, and the Ordered index always keepstheright order:

1, 3, 5

156 Aggregation

3, 5 7

At long as the records with the two highest ids are in the group at all, the Ordered index will keep them in the right position
at the end.

In this case we could even make a bit of optimization: turn the sorting order around, and have the Ordered index arrange
the rows in the descending order. Then instead of skipping the rows until the last two, just take the first two rows of the
reverse order. They'll be iterated in the opposite direction but for the averaging it doesn't matter. And instead of the last
row take the first row of the opposite order. Thisis asimple modification and is left as an exercise for the reader.

Thinking further, the sensitivity to the ordering comes largely from the FIFO index. If the replacement policy could be
done directly on the Ordered index, it would become easier. Would be a good thing to add in the future. Also, if you keep
all the day's trades anyway, you might not need to have a replacement policy at all: just pick the last 2 records for the
aggregation. Thereis currently no way to iterate back from the end (another thing to add in the future) but the same trick
with the opposite order would work.

For anew subject, thistabletypeindexesby id twice: onceasaprimary index, another time asanested one. Are both of them
really necessary or would just the nested one be good enough? That depends on your input data. If you get the DELETESlike
OP_DELETE, 3 with al the other fieldsas NULL, then a separate primary index is definitely needed. But if the DELETESs
come exactly asthe samerecordsthat were inserted, only with adifferent opcode, like OP_DELETE, 3, AAA, 20, 20 then
the primary index can be skipped because the nested sorted index will be able to find the rows correctly and handle them.
The bottom lineis, the fully correct DELETE records are good.

11.5. Optimized DELETEs

I've already mentioned that the DEL ETEs coming out of an aggregator do not haveto berecal culated every time. Instead the
rows can be remembered from the insert time, and simply re-sent with the new opcode. That allows to trade the CPU time
for the extra memory. Of course, this works best when there are many rows per aggregation group, then more CPU time
is saved on not iterating through them. How many is “many”? It depends on the particular cases. Y ou'd have to measure.
Anyway, hereis how it's done:

sub conput eAverage4 # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==

| | $opcode == &Triceps:: OP_NOP);
if ($opcode == &Triceps:: OP_DELETE) ({

$cont ext - >send($opcode, $Pstate);

return;

}

ny $sum = O;
ny $count = O;
for (ny $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next ($rhi)) {
$count ++;
$sum += $rhi - >get Row() - >get ("pri ce");
}
ny $rlLast = $context->last()->get Row();
ny $avg = $sum $count ;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),

id => $rLast->get("id"),

price => $avg

)
${$state} = $res;

Optimized DELETEs 157

$cont ext - >send($opcode, $res);

}

sub initRenmenberLast # (@rgs)

{
ny $refvar;
return \ $refvar;

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", \& nitRenmenberlLast, \&conputeAverage4)

)
)
)

1

Therest of the example stays the same, so it's not shown. Even in the part that is shown, very little has changed.

The aggregator type now has an initialization function. (Thisfunction isnot of the samekind as for the sorted index!) This
function gets called every time a new aggregation group gets created, before the first row isinserted into it. It initializes
the aggregator group's Perl state by creating and returning the state value (the state is per aggregator type, so if there are
two parallel index types, each with an aggregator, each aggregator will have its own group state).

The state is stored in the group as a single Perl variable. So it usually is areference to a more complex object. In this case
the value returned is areference to a variable that would contain a Row reference. (Ironically, the simplest case looks a bit
more confusing than if it were a reference to an array or hash). Returning a reference to any variable is away to create
areference to an anonymous value: each time my executes, it creates a new value. Which is then kept in areference after
the initialization function returns. The next time the function executes, my would create another new value.

The computation function has that state passed as an argument and now makes use of it. It has two small additions. Before
sending a new result row, that row gets remembered in the state reference. And then before doing any computation the
function checks, whether the required opcodeis DELETE, and if so then simply resendsthelast result with the new opcode.
Remember, the rows are not copied but reference-counted, so thisisfairly cheap.

The extralevel of referencing is used because simply assigning to $st at e would only change the local variable and not
the value kept in the group.

However if you change the argument of the function directly, that would change the value kept in the group (similar to
changing the loop variable in a foreach loop). So you can save a bit of overhead by eliminating the extraindirection. The
modified version will be:

sub conput eAverage5 # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==

| | $opcode == &Triceps:: OP_NOP);
if ($opcode == &Triceps:: OP_DELETE) ({

$cont ext - >send($opcode, $state);

return;

}

158 Aggregation

ny $sum = 0;
ny $count = O;
for (nmy $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next ($rhi)) {
$count ++;
$sum += $rhi - >get Row() - >get ("pri ce");
}
ny $rlLast = $context->last()->get Row();
ny $avg = $sum $count ;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rlLast->get("synbol"),

id => $rLast->get("id"),

price => $avg

)

$_[5] = $res;

$cont ext - >send($opcode, $res);
}
sub initRenmenberlLast5 # (@args)
{

return undef;
}

Even though the initialization function returnsundef , it still must be present. If it's not present, the state argument of the
comparison function will contain a special hardcoded and unmodifiable undef constant, and nothing could be remem-
bered.

And hereis an example of its work:

OP_I NSERT, 1, AAA, 10, 10

t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="10"
OP_I NSERT, 2, BBB, 100, 100

t W ndow. aggr AvgPri ce OP_I NSERT synbol ="BBB" id="2" price="100"
OP_I NSERT, 3, AAA, 20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_| NSERT, 4, BBB, 200, 200

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 5, AAA, 30, 30

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 3

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_DELETE, 5

t W ndow. aggr AvgPri ce OP_DELETE synbol =" AAA" id="5" price="30"

"AAA" id="1" price="10"
"AAA" id="3" price="15"

"BBB" id="2" price="100"
"BBB" id="4" price="150"

"AAA" id="3" price="15"
"AAA" i d="5" price="25"

"AAA" id="5" price="25"
"AAA" id="5" price="30"

Since the rows are grouped by the symbol, the symbols“AAA” and “BBB” will have separate aggregation states.

11.6. Additive aggregation

In some cases the aggregation values don't have to be calculated by going through al the rows from scratch every time.
If you do a sum of afield, you can as well add the value of the field when a row is inserted and subtract when arow is
deleted. Not surprisingly, thisis called an “ additive aggregation”.

The averaging can also be done as an additive aggregation: it amounts to asum divided by a count. The sum can obviously
be done additively. The count is potentially additive too, but even better, we have the shortcut of $cont ext - >gr oup-

Additive aggregation 159

Si ze() . Wdll, at least for the same definition of count that has been used previoudly in the non-additive example. The
SQL definition of count (and of average) includes only the non-NULL values, but in the next example we will go with the
Perl approach where a NULL is taken to have the same meaning as 0. The proper SQL count could not use that shortcut
but would still be additive.

Triceps provides away to implement the additive aggregation too. It calls the aggregation computation function for each
changed row, giving it an opportunity to react. The argument $aggop indicates, what has happened. Here is the same
example from Section 11.3: “Introducing the proper aggregation” (p. 149) rewritten in an additive way:

sub comput eAverage7 # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;
my $rowchg;

if ($aggop == &Triceps:: AO BEFORE_MXD) {
$cont ext - >send($opcode, $state->{l astrow});

return;

} elsif ($aggop == &Triceps:: AO AFTER DELETE) {
$rowchg = -1;

} elsif ($aggop == &Triceps:: AO AFTER | NSERT) {
$rowchg = 1;

} else { # AO COLLAPSE, al so has opcode OP_DELETE
return

}
$state->{price_sun} += $rowchg * $rh->get Row)->get ("price");

return if ($context->groupSi ze()==0
|| $opcode == &Triceps:: OP_NOP);

ny $rlLast $cont ext - >l ast () - >get Row() ;

ny $count $cont ext - >gr oupSi ze() ;

nmy $avg = $state->{price_sun}/ $count;

my $res = $context->resul t Type() - >makeRowHash(
synbol => $rlLast->get ("synbol "),
id=> $rlLast->get("id"),
price => $avg

)

$state->{l astrow} = $res;

$cont ext - >send($opcode, $res);

}
sub initAverage7 # (@rgs)
{
return { lastrow => undef, price_sum=> 0 };
}

The tricks of keeping an extra row from Section 11.4: “Tricks with aggregation on a dliding window” (p. 153) could
not be used with the additive aggregation. An additive aggregation relies on Triceps to tell it, which rows are deleted and
which inserted, so it can not do any extra skipping easily. The index for the aggregation has to be defined with the correct
limits. If we want an average of the last 2 rows, we set the limit to 2:

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)

160 Aggregation

->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", \& nitAverage7, \&conputeAverage7)

)
)
)

The aggregation state has grown: now it includes not only the last sent row but also the sum of the price, which is used
for the aggregation, kept together in ahash. The last sent row doesn't really have to be kept, and I'll show another example
without it, but for now let's look at how things are done when it is kept.

The argument $aggop describes, why the computation is being called. Note that Triceps doesn't know if the aggregation
is additive or not. It does the calls the same in every case. Just in the previous examples we weren't interested in this
information and didn't look at it. $aggop contains one of the constant values:

» &Tri ceps:: AO BEFORE MOD: the group is about to be modified, need to send a DELETE of the old aggregated
row. The argument $opcode will always be OP_DELETE.

e &Tri ceps:: AO AFTER DELETE: the group has been modified by deleting a row from it. The argument $r h will
refer to the row handle being deleted. The $opcode may be either OP_NOP or OP_| NSERT. A single operation on a
table may affect multiple rows: an insert may trigger the replacement policy in the indexes and cause one or more rows
to be deleted. If there are multiple rows deleted or inserted in a group, the additive aggregator needs to know about all of
them to keep its state correct but does not need (and even must not) send a new result until the last one of them has been
processed. The call for the last modification will have the opcode of OP_| NSERT. The preceding intermediate ones will
have the opcode of OP_NOP. An important point, even though a row is being deleted from the group, the aggregator
opcodeis OP_I NSERT, because it inserts the new aggregator state!

e &Triceps:: AO AFTER | NSERT: the group has been modified by inserting a row into it. Same as for
AO AFTER_DELETE, $r h will refer to the row handle being inserted, and $opcode will be OP_NOP or OP_| NSERT.

* &Tri ceps:: AO COLLAPSE: called after the last row is deleted from the group, just before the whole group is col-
lapsed and deleted. This allows the aggregator to destroy its state properly. For most of the aggregators there is nothing
special to be done. The only case when you want to do something isif your state causes some circular references. Perl
doesn't free the circular references until the whole interpreter exits, and so you'd have to break the circle to let them be
freed immediately. The aggregator should not produce any results on this call. The $opcode will be OP_NOP.

The computation reacts accordingly: for the before-modification it re-sends the old result with the new opcode, for the
collapse it does nothing, and for after-modification it calculates the sign, whether the value from $r h needs to be added
or subtracted from the sum. I'm actually thinking, maybe this sign should be passed as a separate argument too, and then
both the aggregation operation constants AO_AFTER_* can be merged into one. We'll see, maybe it will be changed in
the future.

Then the addition/subtraction is done and the state updated.

After that, if the row does not need to be sent (opcode is OP_NOP or group size is 0), the function can as well return here
without constructing the new row.

If the row needsto be produced, continue with the same | ogic as the non-additive aggregator, only without iteration through
the group. Theid field in the result is produced by essentially the SQL LAST() operator. LAST() and FI RST() arenot
additive, they refer to the valuesin thelast or first row in the group's order, and simply can not be calculated from looking
at which rows are being inserted and deleted without knowing their order in the group. But they are fast as they are, and
do not require iteration. The same goes for the row count (as long as we don't care about excluding NULLSs, violating the
SQL semantics). And for averaging there is the last step to do after the additive part is done: divide the sum by the count.

All these non-additive steps are done in this last section, then the result row is constructed, remembered and sent.

Not all the aggregation operations can be expressed in an additive way. It may even vary by the data. For MAX() , the
insertion of a row can be always done additively, just comparing the new value with the remembered maximum, and

Additive aggregation 161

replacing it if the new value is greater. The deletion can also compare the deleted value with the remembered maximum.
If the deleted value is less, then the maximum is unchanged. But if the deleted value is equal to the maximum, MAX() has
to iterate through all the values and find the new maximum.

There is also an issue with the floating point precision in the additive aggregation. It's not such a big issue if the rows are
only added and never deleted from the group, but can get much worse with the deletion. Let me show it with a sample
run of the additive code:

OP_I NSERT, 1, AAA, 1, 10
t W ndow. aggr AvgPri ce OP_I NSERT synbol =" AAA" id="1" price="1"
OP_I NSERT, 2, AAA, 1e20, 20

t W ndow. aggr AvgPri ce OP_DELETE synbol
t W ndow. aggr AvgPri ce OP_I NSERT synbol
OP_I NSERT, 3, AAA, 2, 10

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo
OP_I NSERT, 4, AAA, 3, 10

t W ndow. aggr AvgPri ce OP_DELETE synbo
t W ndow. aggr AvgPri ce OP_I NSERT synbo

"AAA" id="1" price="1"
"AAA" i d="2" price="5e+19"

"AAA" i d="2" price="5e+19"
"AAA" i d="3" price="5e+19"

"AAA" id="3" price="5e+19"
"AAA" id="4" price="1.5"

Why isthelast result 1.5 whileit had to be (2+3)/2 = 2.5? Because adding together 1e20 and 2 had pushed the 2 beyond the
precision of floating-point number. 1e20+2 = 1e20. So when the row with 120 was del eted from the group and subtracted
form the sum, that left 0. Which got then averaged with 3, producing 1.5.

Of course, with the real stock prices there won't be that much variation. But the subtler errors will till accumulate over
time, and you have to expect them and plan accordingly.

Switching to a different subject, the additive aggregation contains enough information in its state to generate the result
rows quickly without an iteration. This means that keeping the saved result row for DELETEs doesn't give awhole lot of
advantage and adds at least alittle memory overhead. We can change the code and avoid keeping it:

sub conput eAverage8 # (table, context, aggop, opcode, rh, state, args...)
{

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

ny $rowchg;

if (%aggop == &Triceps:: AO COLLAPSE) {
return
} elsif ($aggop == &Triceps:: AO AFTER DELETE) {
$state->{price_sunt -= $rh->get Row()->get ("price");
} elsif ($aggop == &Triceps:: AO AFTER | NSERT) {
$state->{price_sunt += $rh->get Row()->get ("price");
}
on AO_BEFORE_MOD do not hi ng

return i f ($context->groupSi ze()==
| | $opcode == &Triceps:: OP_NOP);

$cont ext - >l ast () - >get Row() ;
$cont ext - >gr oupSi ze() ;

ny $rlLast =
ny $count =
$cont ext - >makeHashSend($opcode,

synbol => $rLast->get ("synbol "),

id => $rLast->get("id"),

price => $state->{price_sun}/$Scount,
)
}

sub initAverage8 # (@rgs)
{

162 Aggregation

return { price_sum=> 0 };

}

On AO_BEFORE_MOD it doesn't do any change to the additive state but then produces the result row from that state as
usual, using the supplied $opcode value of OP_DELETE. The other change in this example is that the sum gets directly
added or subtracted in AO_AFTER _* instead of computing the sign first. It'sall pretty much self-explanatory.

11.7. Computation function arguments

Let'slook up close at what calls are done to the aggregation computation function. Just make a“computation” that prints
the call arguments:

sub conput eAverage9 # (table, context, aggop, opcode, rh, state, args...)
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;
print (&Triceps::aggOpString($aggop), " ", &Triceps::opcodeString($opcode), " ",
$cont ext ->groupSi ze(), " ", (!$rh->isNull()? $rh->getRow)->printP(): "NULL"), "\n");
}

It prints the aggregation operation, the result opcode, row count in the group, and the argument row (or “NULL"). The
aggregation is done as before, on the same FIFO index with the size limit of 2.

To show the order of aggregator cals relative to the table label calls, I've added the labels that print the updates form
the table:

ny $l bPre
nmy $l bQut

mekePri nt Label ("I bPre", $tW ndow >get PreLabel ());
mekePri nt Label ("I bQut", $tW ndow >get Qut put Label ());

To make keeping track of the printout easier, | broke up the sequence into multiple fragments, with a description after
each fragment:

OP_I NSERT, 1, AAA, 10, 10

t Wndow. pre OP_I NSERT id="1" synbol =" AAA" price="10" size="10"

t W ndow. out OP_I NSERT i d="1" synbol =" AAA" price="10" size="10"
AO_AFTER_I NSERT OP_I NSERT 1 id="1" synbol ="AAA" price="10" size="10"
OP_I| NSERT, 2, BBB, 100, 100

t W ndow. pre OP_I NSERT i d="2" synbol ="BBB" price="100" size="100"

t W ndow. out OP_I NSERT i d="2" synbol ="BBB" price="100" size="100"
AO_AFTER_I NSERT OP_I NSERT 1 id="2" synbol ="BBB" price="100" size="100"

The INSERT of the first row in each group causes only one call. There is no previous value to delete, only a new one to
insert. The call happens after the row has been inserted into the group.

OP_I NSERT, 3, AAA, 20, 20

AO _BEFORE_MOD OP_DELETE 1 NULL

t Wndow. pre OP_I NSERT i d="3" synbol =" AAA" price="20" size="20"

t W ndow. out OP_I NSERT i d="3" synbol =" AAA" price="20" size="20"
AO_AFTER_I NSERT OP_I NSERT 2 id="3" synbol =" AAA" price="20" size="20"

Adding the second record in a group means that the aggregation result for this group is modified. So first the aggregator
is caled to delete the old result, then the new row gets inserted, and the aggregator is called the second time to produce
its new result.

OP_I NSERT, 5, AAA, 30, 30

AO_BEFORE_MOD OP_DELETE 2 NULL

t Wndow. pre OP_DELETE id="1" synbol =" AAA" price="10" size="10"
t W ndow. out OP_DELETE id="1" synbol =" AAA" price="10" size="10"
t Wndow. pre OP_I NSERT i d="5" synbol =" AAA" price="30" size="30"

Computation function arguments 163

t W ndow. out OP_I NSERT i d="5" synbol =" AAA" price="30" size="30"
AO_AFTER DELETE OP_NOP 2 id="1" synbol ="AAA" price="10" size="10"
AO_AFTER_I NSERT OP_I NSERT 2 id="5" synbol =" AAA" price="30" size="30"

Theinsertion of the third row in a group triggers the replacement policy in the FIFO index. The replacement policy causes
the row with id=1 to be deleted before the row with id=5 isinserted. For the aggregator result it's still asingle delete-insert
pair: First, before modification, the old aggregation result is deleted. Then the contents of the group gets modified with
both the delete and insert. And then the aggregator gets told, what has been modified. The deletion of the row with id=1
is not the last step, so that call gets the opcode of OP_NOP. Note that the group size with it is 2, not 1. That's because
the aggregator gets notified only after all the modifications are already done. So the additive part of the computation must
never read the group size or do any kind of iteration through the group, because that would often cause an incorrect result:
it has no way to tell, what other modifications have been already done to the group. The last AO_ AFTER | NSERT gets
the opcode of OP_| NSERT which tells the computation to send the new result of the aggregation. When the opcode is
OP_| NSERT, reading the group size and the other group information becomes safe, because by thistime all the modifica-
tions are guaranteed to be done, and the additive notifications have caught up with all the changes.

OP_I NSERT, 3, BBB, 20, 20
AO_BEFORE_MOD OP_DELETE 2 NULL
AO_BEFORE_MOD OP_DELETE 1 NULL
t W ndow. pre OP_DELETE i d="3" synbol =" AAA" price="20" size="20"

t W ndow. out OP_DELETE i d="3" synbol =" AAA" price="20" size="20"

t W ndow. pre OP_I NSERT i d="3" synbol ="BBB" price="20" size="20"

t W ndow. out OP_I NSERT i d="3" synbol ="BBB" price="20" size="20"
AO_AFTER DELETE OP_I NSERT 1 id="3" synbol ="AAA" price="20" size="20"
AO_AFTER_| NSERT OP_I NSERT 2 i d="3" synbol ="BBB" price="20" size="20"

Thisinsert is of a“dirty” kind, the one that replaces the row using the replacement policy of the hashed primary index,
without deleting its old state first. It also moves the row from one aggregation group to another. So the table logic cals
AO_BEFORE_MODfor each of the modified groups, then modifies the contents of the groups, then tells both groups about
the modifications. In this case both callswith AO_AFTER_* have the opcode of OP_| NSERT because each of them isthe
last and only change to a separate aggregation group.

OP_DELETE, 5

AO BEFORE_MOD OP_DELETE 1 NULL

t W ndow. pre OP_DELETE i d="5" synbol =" AAA" price="30" size="30"

t W ndow. out OP_DELETE i d="5" synbol =" AAA" price="30" size="30"

AO AFTER DELETE OP_I NSERT 0 id="5" synbol =" AAA" price="30" size="30"
AO COLLAPSE OP_NOP 0 NULL

This operation removesthelast row in agroup. It starts as usual with deleting the old state. Thenext AO_ AFTER_DELETE
with OP_| NSERT isintended for the Coral 8-style aggregators that produce only the rowswith the INSERT opcodes, never
DELETEsS, to let them insert the NULL (or zero) valuesin al the non-key fields. For the normal aggregators the work is
all done after OP_DELETE. That's why all the shown examples were checking for $cont ext - >gr oupSi ze() ==
and returning if so. The group size will be zero in absolutely no other case than after the deletion of the last row. Finally
AO_COLLAPSE allowsto clean up the aggregator's group stateif it needs any cleaning. It has the opcode OP_ NOP because
no rows need to be sent.

To recap, the high-level order of the table operation processing is:

1. Execute the replacement policies on all the indexesto find al the rows that need to be deleted first.

2. If any of theindex policies forbid the modification, return O.

3. Call al the aggregators with AO_BEFORE_MOD on all the affected rows.

4. Send these aggregator results.

5. For each affected row:

164 Aggregation

a. Call the"pre" labdl (if it has any labels chained to it).
b. Modify the row in the table.
c. Call the"out" label.
6. Call al the aggregators with AO_AFTER *, on all the affected rows.

7. Send these aggregator results.

11.8. Using multiple indexes

I've mentioned before that the floating numbers are tricky to handle. Even without additive aggregation the result depends
on the rounding. Which in turn depends on the order in which the operations are done. Let's ook at a version of the
aggregation code that highlights thisissue.

sub conput eAveragelO # (table, context, aggop, opcode, rh, state, args...)

{
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

don't send the NULL record after the group becones enpty
return if ($context->groupSi ze()==0
|| $opcode != &Triceps:: OP_I NSERT);

ny $sum = 0;
ny $count = O;
for (nmy $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next($rhi)) {
$count ++;
$sum += $rhi - >get Row() - >get (" price");
}
ny $rlLast = $context->last()->get Row);
ny $avg = $sum $count ;

ny $res = $context->resultType() - >makeRowHash(
synbol => $rlLast->get("synbol"),

id => $rlLast->get("id"),

price => $avg

)
$cont ext - >send($opcode, $res);

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: | ndexType- >newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: | ndexType- >newHashed(key => ["synbol"])
- >addSubl ndex(" | ast 4",
Triceps::lndexType->newFi fo(limt => 4)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragelO)
)
)
)

$ttWndow>initialize();
ny $t W ndow = $uTrades->nmakeTabl e($tt W ndow, "t W ndow') ;

Using multiple indexes 165

label to print the result of aggregation
ny $l bAverage = $uTrades- >makelLabel ($rt AvgPrice, "I bAverage",
undef, sub { # (label, rowop)
printf("%17g\n", $_[1]->getRow)->get("price"));
1)
$t W ndow >get Aggr egat or Label ("aggr AvgPri ce") - >chai n($l bAver age) ;

The differences from the previously shown basic aggregation are:
* the FIFO limit has been increased to 4;

« theonly result value printed by the $I bAver age handler isthe price, and it's printed with a higher precision to make
the difference visible;

» the aggregator computation only does the inserts, to reduce the clutter in the results and highlight the issue.

And hereis an example of how the order of computation matters:

OP_I NSERT, 1, AAA, 1, 10

1

OP_I NSERT, 2, AAA, 1, 10

1

OP_I NSERT, 3, AAA, 1, 10

1

OP_I NSERT, 4, AAA, 1e1l6, 10
2500000000000001

OP_I NSERT, 5, BBB, 1e16, 10
10000000000000000

OP_I NSERT, 6, BBB, 1, 10
5000000000000000

OP_I NSERT, 7, BBB, 1, 10
3333333333333333. 5

OP_I NSERT, 8, BBB, 1, 10
2500000000000000

Of course, the real prices won't vary so wildly. But the other values could. This example is specially stacked to demon-
strate the point. The final results for “AAA” and “BBB” should be the same but aren't. Why? The precision of the 64-bit
floating-point numbers is such that adding 1 to 1e16 makes this 1 fall beyond the precision, and the result is still 1el6.
On the other hand, adding 3 to 1e16 makes at least a part of it stick. 1 till falls off but the other 2 of 3 sticks on. Next
look at the data sets: if you add 1€16+1+1+1, that's adding 1e16+1 repeated three times, and the result is still the same
unchanged 1e16. But if you add 1+1+1+1e16, that's adding 3+1€16, and now the result is different and more correct. When
the averages get computed from these different values by dividing the sums by 4, the results are also different.

Overal the rule of thumb for adding the floating point numbers is this: add them up in the order from the smallest to
the largest. (What if the numbers can be negative too? | don't know, that goes beyond my knowledge of floating point
calculations. My guess is that you still arrange them in the ascending order, only by the absolute value.) So let'sdo it in
the aggregator.

our $i dxByPrice;

aggregation handler: sumin proper order
sub conmput eAveragell # (table, context, aggop, opcode, rh, state, args...)

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;
our $i dxByPrice;

don't send the NULL record after the group becones enpty
return if ($context->groupSize()==
| | $opcode != &Triceps:: OP_I NSERT);

166 Aggregation

ny $sum = 0;
ny $count = O;
ny $end = $cont ext - >endl dx($i dxByPri ce);
for (nmy $rhi = $context->begi nl dx($i dxByPrice); !$rhi->sane($end);
$rhi = $rhi->next!dx($i dxByPrice)) {
$count ++;
$sum += $rhi - >get Row() - >get ("pri ce");
}
ny $rlLast = $context->last()->get Row();
ny $avg = $sum $count ;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rLast->get ("synbol "),

id => $rLast->get("id"),

price => $avg

)
$cont ext - >send($opcode, $res);

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex(" | ast 4",
Triceps:: I ndexType->newFi fo(linmt => 4)
->set Aggregator (Tri ceps: : Aggr egat or Type- >new
$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragell)
)

)
- >addSubl ndex("byPrice",
Tri ceps:: Si npl eOrder edl ndex- >new(pri ce => "ASC',)
->addSubl ndex("multi", Triceps::|ndexType->newrifo())
)
)

$ttWndow >initialize();
ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "tW ndow');

$i dxByPrice = $tt W ndow >fi ndl ndexPat h("bySynbol ", "byPrice");

Here another index type is added, ordered by price. It has to be non-leaf, with a FIFO index type nested in it, to alow
for multiple rows having the same price in them. That would work out more efficiently if the ordered index could have a
multimap mode, but that is not supported yet.

When the compute function does its iteration, it now goes by that index. The aggregator can't be simply moved to that
new index type, because it still needs to get the last trade id in the order in which the rows are inserted into the group.
Instead it hasto work with two index types:. the one on which the aggregator is defined, and the additional one. The callsfor
iteration on an additional index are different. $cont ext - >begi nl dx() issimilar to $cont ext - >begi n() but the
end condition and the next step are done differently. When $r hi - >next | dx() reachesthe end of the group, it returns
not a NULL row handle but a handle value that has to be found in advance with $cont ext - >endl dx() . Perhaps the
consistency in this department can be improved in the future.

And finally, the reference to that additional index type has to make it somehow into the compute function. It can't be given
as an argument because it's not known yet at the time when the aggregator is constructed (and no, reordering the index
types won't help because the index types are copied when connected to their parents, and we need the exact index type that
ends up in the assembled table type). So a global variable $i dxByPri ce isused. The index type referenceis found and
placed there, and later when the compute function runs, it takes the reference from the global variable.

Using multiple indexes 167

The printout from this version on the sameinput is:

OP_I NSERT, 1, AAA, 1, 10

1

OP_I NSERT, 2, AAA, 1, 10

1

OP_I NSERT, 3, AAA, 1, 10

1

OP_| NSERT, 4, AAA, 1e16, 10
2500000000000001

OP_| NSERT, 5, BBB, 1e16, 10
10000000000000000

OP_| NSERT, 6, BBB, 1, 10
5000000000000000

OP_| NSERT, 7, BBB, 1, 10
3333333333333334

OP_| NSERT, 8, BBB, 1, 10
2500000000000001

Now no matter what the order of the row arrival, the prices get added up in the same order from the smallest to the largest
and produce the same correct (inasmuch the floating point precision allows) resullt.

Which index typeis used to put the aggregator on, doesn't matter awhole lot. The computation can be turned around, with
the ordered index used asthe main one, and the last value from the FIFO index obtained with $cont ext - >l ast | dx():

our $i dxByOrder;

aggregation handler: sumin proper order
sub conput eAveragel2 # (table, context, aggop, opcode, rh, state, args...)
{

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

our $i dxByOrder;

don't send the NULL record after the group becones enpty
return i f ($context->groupSize()==
| | $opcode != &Triceps:: OP_I NSERT);

ny $sum= 0
ny $count = O;
for (nmy $rhi = $context->begin(); !$rhi->isNull();
$rhi = $context->next ($rhi)) {
$count ++;
$sum += $rhi - >get Row() - >get ("price");
}
ny $rlLast = $context->l ast! dx($i dxByOrder)->get Row();
ny $avg = $sum $count;

ny $res = $context->result Type() - >makeRowHash(
synbol => $rLast->get ("synbol "),

id => $rLast->get("id"),

price => $avg

)
$cont ext - >send($opcode, $res);

}

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d"
Triceps:: I ndexType->newHashed(key => ["id"])

)

- >addSubl ndex(" bySynbol "
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 4",

168 Aggregation

Triceps:: I ndexType->newFi fo(linmt => 4)

)

- >addSubl ndex("byPrice",
Tri ceps:: Si npl eOrder edl ndex- >new(pri ce => "ASC',)
->addSubl ndex("multi", Triceps::|ndexType->newrifo())
->set Aggregator (Tri ceps: : Aggr egat or Type- >new

$rt AvgPrice, "aggrAvgPrice", undef, \&conputeAveragel?)

)

)

)

$ttWndow >initialize();
ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "t W ndow');

$i dxByOrder = $tt W ndow >fi ndl ndexPat h("bySynbol ", "last4");

The last important note: when aggregating with multiple indexes, always use the sibling index types forming the same
group or their nested sub-indexes (since the actual order is defined by the first leaf sub-index anyway). But don't use the
random unrelated index types. If you do, the context would return some unexpected values for those, and you may end
up with endless loops.

11.9. SimpleAggregator

Even though the writing the aggregation computation functions manually gives the flexibility, it's too much work for the
simple cases. The SimpleAggregator template takes care of most of that work and allows you to specify the aggregation in
away similar to SQL. It has been aready shown on the VWAP example, ans here is the trade aggregation example from
Section 11.3: “Introducing the proper aggregation” (p. 149) rewritten with SimpleAggregator:

ny $ttWndow = Triceps:: Tabl eType- >new($rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: I ndexType->newHashed(key => ["id"])

)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
- >addSubl ndex("| ast 2",
Triceps:: I ndexType->newFi fo(linmt => 2)
)
)

the aggregation result
ny $rtAvgPrice;
ny $conpText; # for debuggi ng

Tri ceps: : Si npl eAggr egat or: : nake(
tabType => $tt W ndow,
name => "aggrAvgPrice",

idxPath => ["bySynbol", "last2"],

result => |
synbol => "string", "last", sub {$_[0]->get("synbol");},
id=>"int32", "last", sub {$_[0]->get("id");},

price => "float64", "avg", sub {$_[O0]->get("price");},
1.
saveRowTypeTo => \ $rt AvgPri ce,
saveConput eTo => \ $conpText,
)

$ttWndow >initialize();
ny $t W ndow = $uTrades- >nakeTabl e($tt W ndow, "tW ndow');

SimpleAggregator 169

label to print the result of aggregation
ny $l bAverage = nakePrintLabel ("I bAver age",
$t W ndow >get Aggr egat or Label ("aggr AvgPrice"));

The main loop and the printing is the same as before. The result produced is a so exactly the same as before.

But theaggregator iscreatedwith Tr i ceps: : Si npl eAggr egat or : : make() . Itsargumentsarein the option format:
the option name-value pairs, in any order.

$tabType = Triceps:: Sinpl eAggregat or: : make($opt Name => $opt Val ue, ...);

It returns back the table type that it received as an option. But most of the time there is not awhole lot of useto that return
value, and it gets simply ignored. Most of the “options’ are actually mandatory. The aggregator type is connected to the
table type with the options:

tabType
Table type to put the aggregator on. It must be un-initialized yet.

idxPath
A reference to an array of index names, forming the path to the index where the aggregator type will be set.

name
The aggregator type name.

The result row type and computation is defined with the option “result”: each group of four values in that array defines
one result field:

e Thefield name.
» Thefield type.

» The aggregation function name used to compute thefield. There is no way to combine multiple aggregation functions or
even an aggregation function and any arithmetics in a field computation. The workaround is to compute each function
in aseparate field, and then send the result rows to a computational label that would arithmetically combine these fields
into one.

» A closure that extracts the aggregation function argument from the row (well, it can be any function reference, doesn't
have to be an anonymous closure). That closure gets the row as the argument $_[0] and returns the extracted value
to run the aggregation on.

The field name is by convention separated from its definition fields by =>. Remember, it's just a convention, for Perl a
=> jsjust as good as a comma.

Si npl eAggr egat or: : make() automatically generates the result row type and aggregation function, creates an ag-
gregator type from them, and sets it on the index type. The information about the aggregation result can be found by
traversing through the index typetree, or by constructing atable and getting the row type from the aggregator result label.
However it's often easier to save it during construction, and the option (this time an optional one!) “saveRowTypeTo”
allowsto do this. Giveit areference to avariable, and the row type will be placed into that variable.

Most of the time the things would just work. However if they don't and something dies in the aggregator, you will need
the source code of the compute function to make sense of these errors. The option saveConput eTo givesavariable to
save that source code for future perusal and other entertainment. Here is the compute function that gets produced by the
example above (it getsimplicitly wrapped inasub { ... },likeany other source code argument):

use strict;

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;
return i f ($context->groupSize()==0 || $opcode == &Triceps:: OP_NOP);
ny $v2_count = O;

ny $v2_sum = O;

ny $npos = 0;

170 Aggregation

for (ny $rhi = $context->begin(); !'$rhi->isNull(); $rhi = $context->next($rhi)) {
ny $row = $rhi->get Row();
field price=avg
ny $a2 = $args[2] ($row);
{ if (defined $a2) { $v2_sum += $a2; $v2_count++; }; }
$npos++;

}

ny $rowlLast = $context->last()->get Row);

ny $10 = $args[0] ($rowLast);

ny $I1 = $args[1] ($rowLast);

$cont ext - >makeAr r aySend($opcode,

($10), # synbol

(811, #id

(($v2_count == 0? undef : $v2_sum/ $v2_count)), # price

)

At the moment the compute function is quite straightforward and just does the aggregation from scratch every time. It
doesn't support the additive aggregation nor the DEL ETE optimization. It's only smart enough to skip theiteration if al the
result consists of only aggregation functionsfi r st , | ast and count _st ar . It receives the closures for the argument
extraction as argumentsin @r gs, SimpleAggregator arranges these arguments when it creates the aggregator.

The aggregation functions available at the moment are:

first
Vaue from the first row in the group.

| ast
Vaue from the last row in the group.

count _star
Number of rows in the group, like SQL COUNT(*) . Since thereis no argument for this function, use undef instead
of the argument closure.

sum
Sum of the values.

nmax
The maximal value.

mn
The minimal value.

avg
The average of al the non-NULL values.

avg_per|
Theaverage of all values, with NULL valuestreated in Perl fashion as zeroes. So, technically when the example above
used av g, it works the same as the previous versions only for the non-NULL fields. To be really the same, it should
haveused avg_perl .

nt h_si npl e
The Nth value from the start of the group. This is a tricky function because it needs two arguments: the value of
N and the field selector. Multiple direct arguments will be supported in the future but right now it works through a
workaround: the argument closure must return not just the extracted field but a reference to array with two values, the
N and thefield. Forexample,sub { [1, $ [0]->get("id")];}.TheN iscounted startingfrom 0, sothevalue
of 1 will return the second record. This function worksin afairly simple-minded and inefficient way at the moment.

Asusual in Triceps and Perl, the case of the aggregation function name matters. The names have to be used in lowercase as
shown. There will be more functions to come, and you can even already add your own, as has been shown in Section 11.1:
“The ubiquitous VWAP”" (p. 143) .

SimpleAggregator 171

The user-defined aggregation functions are defined with the option “functions’. Let's take another look at the code from
the VWAP example:

VWAP function definition
ny $myAggFunctions = {
myvwap => {
vars => { sum=> 0, count => 0, size => 0, price => 0 },
step => ' ($%i ze, $%rice) = @%rgiter;
"if (defined $%ize && defined $%rice) '
"{$%ount += $%ize; $¥%um += $%ize * $%rice;}",
result =>"'($%ount == 0? undef : $%sum/ $%ount)’,
H
b

Tri ceps:: Si nmpl eAggr egat or : : make(
functions => $nmyAggFuncti ons,

):

The definition of the functions is a reference to a hash, keyed by the function name. Each function definition in order is
a hash of options, keyed by the option nhame. When the SimpleAggregator builds the common computation function, it
assembles the code by tying together the code fragments from these options: Whenever the group changes, the aggregator
will reset the function state variables to the default values and iterate through the new contents of the group. It will perform
the step computation for each row and collect the data in the intermediate variables. After the iteration it will perform the
result computation of all the functions and produce the final value.

The expected format of the values of these options varies with the option. The option “result” is mandatory, the rest can
be skipped if not needed. The supported options are:

ar gcount
Integer. Defines the number of arguments of the function, which may currently be 0 or 1, with 1 being the default. If
this option is 0, SimpleAggregator will check that the argument closure isundef . If the aggregation function needs
more argumentsthan one, they haveto be packed into an array or hash, and thenitsreference used asasingle argument.
The standard function nt h_si npl e and the VWAP function provide the examples of how to do this.

vars
Reference to a hash. Defines the variables used to keep the context of this function during the iteration (the hash keys
are the variable names) and their initial values (specified as the valuesin the hash).

step
String. The code fragment to compute a single step of iteration. It can refer to the variables defined in var s and to
afew of the pre-defined values using the syntax $%mane (which has been chosen because it's illegal in the normal
Perl variable syntax). When SimpleAggregator generates the code, it creates the actual scope variables for everything
definedinvar s, then substitutesthem for the $%syntax in the string and inserts the result into its group iteration code.

If this option is not defined, SimpleAggregator assumes that this function doesn't need it. If no functionsin the aggre-
gation define the st ep, the iteration does not get included into the generated code altogether.

The defined specia values are:

» $%ar gi t er - Thefunction's argument extracted from the current row.

* $%ni t er - The number of the current row in the group, starting from 0.
» $%@r oupsi ze - Thesize of the group ($cont ext - >gr oupSi ze()).

result
String. The code fragment to compute the result of the function. This option is mandatory. Works in the same way as
st ep, only gets executed once per call of the computation function, and the defined special values are different:

172 Aggregation

» $%ar gf i r st - Thefunction's argument extracted from the first row.
» $%ar gl ast - Thefunction's argument extracted from the last row.
» $%gr oupsi ze - Thesize of the group ($cont ext - >gr oupSi ze()).

I can think of many ways the SimpleAggregator can be improved, but for now they have been pushed into the future to
keep it simple.

11.10. The guts of SimpleAggregator

The implementation of the SimpleAggregator has turned out to be surprisingly small. Not quite tiny but still small. I've
liked it so much that I've even saved the original small version in the file xSi npl eAggr egat or . t . As more features
will be added, the “officia” version of the SimpleAggregator will grow (and already did) but that example file will stay
small and simple.

It's a nice example of yet another kind of template that | want to present. I'm going to go through it, interlacing the code
with the commentary.

package MySi npl eAggr egat or;
use Carp;

use strict;

our $FUNCTIONS = {
first => {
result => "'"$%rgfirst’,
}.
last => {
result =>"'$%rglast',
H
count _star => {
argcount => 0,
result => "'$%groupsi ze',
H
count => {
vars => { count => 0 },
step => '$%ount++ if (defined $%rgiter);"',
result =>"'$%ount"',
H
sum => {
vars => { sum=> 0 },
step => '$%um += $%argiter; "',
result =>"'3$%um,
H
max => {
vars => { max => 'undef' },
step => '$%mx = $%argiter if (!defined $%max || $%rgiter > $%max);"',
result =>"'$%max',
H
mn => {
vars => { min => "undef' },
step => '"$%nin = $%argiter if (!defined $%rin || $%rgiter < $%rin);"',
result =>"'$%rn',
H
avg => {
vars => { sum=> 0, count => 0 },
step => 'if (defined $%rgiter) { $%um += $%rgiter; $%ount++, }',
result =>"'($%ount == 0? undef : $%um/ $%ount)',

b

The guts of SimpleAggregator 173

avg perl =>{ # Perl-like treat the NULLs as Os
vars => { sum=> 0 },
step => '$%um += $%argiter;"',
result => '"$%um/ 3$%groupsize',

}

nth_sinple => { # inefficient, need proper nulti-args for better efficiency
vars => { n => 'undef', tnp => "undef', val => "undef' },
step => ' ($%, $%nmp) = @%argiter; if ($% == $%iter) { $Wal = $%np; }',
result =>"'3$Wwal",

}

s

The package name of this saved simple version is MySimpleAggregator, to avoid confusion with the “official” SimpleAg-
gregator class. First goesthe definition of the aggregation functions. They are defined in exactly the same way as the vwap
function has been shown before. They arefairly straightforward. Y ou can use them asthe starting point for adding your own.

sub make # (optName => optValue, ...)
{
ny $opts = {}; # the parsed options
ny $nynane = "MSi npl eAggr egat or: : make";

&Triceps:: Opt::parse("M/Si npl eAggregator”, S$opts, {

tabType => [undef, sub { &Triceps:: Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps:: Tabl eType") } 1],

name => [undef, \&Triceps:: Opt::ck_mandatory],

idxPath => [undef, sub { &Triceps::Opt::ck_mandatory(@); &Triceps::Opt::ck_ref(@,
"ARRAY', ") } 1,

result => [undef, sub { &Triceps:: Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"ARRAY") }],

saveRowTypeTo => [undef, sub { &Triceps::Opt::ck _refscalar(@) } 1],

savelnitTo => [undef, sub { &Triceps:: Opt::ck_refscalar(@) } 1,

saveComput eTo => [undef, sub { &Triceps::Opt::ck _refscalar(@) } 1],

}o@);

The options get parsed. Sinceit's not a proper object constructor but afactory, it usesthe hash $opt s instead of $sel f to
save the processed copy of the options. Thisearly version doesn't have an option for the user-supplied aggregation function
definitions.

reset the saved source code

${ $opt s- >{savel nit To}} = undef if (defined($opts->{savelnitTo}));

${ $opt s- >{ saveConput eTo}} = undef if (defined($opts->{saveConputeTo}));
${ $opt s- >{ saveRowTypeTo}} = undef if (defined($opts->{saveRowTypeTo}));

The generated source code will not be placed into the save* references until the table type gets initialized, so for the
meantime they get filled with undef s.

find the index type, on which to build the aggregator
nmy $idx = $opts->{tabType}->findl ndexPat h(@ $opt s->{i dxPath}});
confess "$nmynane: the index type is already initialized, can not add an aggregator on
it"
if ($idx->islnitialized());

Since the SimpleAggregator uses an existing table with existing index, it doesn't require the aggregation key: it just takes
an index that forms the group, and whatever key that leads to this index becomes the aggregation key.

check the result definition and build the result row type and code snippets for the
conputation

ny $rtRes;

ny $needliter = 0; # flag: sone of the functions require iteration

ny $needfirst = 0; # the result needs the first row of the group

ny $needl ast 0; # the result needs the |ast row of the group

ny $codelnit # code for function initialization

174 Aggregation

ny $codeStep = ''; # code for iteration
ny $codeResult ="''; # code to conpute the internedi ate values for the result
ny $codeBuild = "''; # code to build the result row
ny @onpArgs; # the field functions are passed as args to the conputation
{
ny $grpstep = 4; # definition grouped by 4 itens per result field
ny @esopt = @%$opts->{result}};
ny @tdefRes; # field definition for the result
ny $id = 0; # nuneric id of the field

while ($#resopt >= 0) {
confess "$nmynanme: the values in the result definition nmust go in groups of 4"
unl ess ($#resopt >= 3);
ny $fld = shift @esopt;
ny $type = shift @esopt;
ny $func shift @esopt;
ny $funcarg = shift @esopt;

confess("$nyname: the result field name nust be a string, got a " . ref($fld) . " ")
unl ess (ref($fld) eq '");
confess("$nyname: the result field type nust be a string, got a " . ref($type)
for field "$fld ")
unl ess (ref($type) eq '');
confess("$nyname: the result field function nust be a string, got a " . ref($func)
" for field "$f1d ")
unl ess (ref($func) eq '');

This starts the loop that goes over the result fields and builds the code to create them. The code will be built in multiple
snippets that will eventually be combined to produce the compute function. Since the arguments go in groups of 4, it
becomesfairly easy to missone element somewhere, and then everything getsreal confusing. So the code attemptsto check
the types of the arguments, in hopes of catching these off-by-ones as early as possible. The variable $i d will be used to
produce the unique prefixes for the function's variables.

nmy $funcDef = $FUNCTI ONS- >{ $f unc}
or confess("$nynane: function '" . $func . "' is unknown");

ny $argCount = $funcDef->{argcount};
$argCount = 1 # 1 is the default val ue
unl ess defi ned($ar gCount);
confess("$nyname: in field '$fld function '$func' requires an argunent conputation
that nmust be a Perl sub reference")
unl ess ($argCount == 0 || ref $funcarg eq ' CODE');
confess("$nyname: in field '$fld function '$func' requires no argunent, use undef
as a pl acehol der")
unl ess ($argCount !'= 0 || !defined $funcarg);

push(@tdefRes, $fld, $type);

push(@onpArgs, $funcarg)
if (defined $funcarg);

The function definition for afield gets pulled out by name, and the arguments of the field are checked for correctness. The
types of the fields get collected for the row definition, and the aggregation argument computation closures (or, technically,
functions) get also collected, to pass later as the arguments of the compute function.

add to the code snippets

initialization
ny $vars = $f uncDef->{vars};
if (defined $vars) {
foreach ny $v (keys %vars) {

The guts of SimpleAggregator 175

the variable nanes are given a uni que prefix;
the initialization values are constants, no substitutions

$codelnit . =" nmy \$v¥{id}_${v} =" . $vars->{$v} . ";\n";
} else {
$vars = { }; # a dummy

}

The initialization fragment gets processed if defined. The unique names for variables are generated from the $i d and
the variable name in the definition, so that there would be no interference between the result fields. And the initialization
snippets are collected in $codel ni t . The initialization values are not enquoted because they are expected to be strings
suitable for such use. That's why the undefined values in the function defnitions are not undef but ' undef ' . If you'd
want to initialize avariable asastring " x" , you'd useitas' " x" "' . For the numbers it doesn't really matter, the numbers
just get converted to strings as needed, so the zeroes are simply 0s without quoting.

Another possibility would be to have the actual values as-isin the hash and then either put these values into the argument
array passed to the computation function or use the closure trick from Tri ceps: : Fi el ds: : nakeTr ansl ati on()
described in Section 10.7: “Result projection in the templates’ (p. 136) .

iteration
ny $step = $f uncDef - >{step};
if (defined $step) {
$needlter = 1;
$codeStep .= " # field $fl d=$f unc\n";
if (defined $funcarg) {
compute the function argunment fromthe current row
$codeStep .= " ny \$a${id} = \$args[" . $#conpArgs ."]1(\$row);\n";
}

substitute the variables in $step
$step =~ s/\$\ %\ w+)/ & epl aceSt ep($1, $func, $vars, $id, $argCount)/ge;
$codeStep .= " { $step; }\n";

}

Then the iteration fragment gets processed. The logic remembersin $needl t er if any of the functions involved needs
iteration. Before the iteration snippet gets collected, it has the $%names substitutted, and placed into a block, just in case
if it wants to define some local variables. An extra“;” is added just in case, it doesn't hurt and helps if it was forgotten
in the function definition.

result building
ny $result = $funcDef->{result};
confess "MSi npl eAggregator: internal error in definition of aggregation function
"$func', missing result conputation”
unl ess (defined $result);
substitute the variables in $result
if ($result =~ /\$\%rgfirst/) {
$needfirst = 1;

$codeResult .= " ny \$f${id} = \S$args[" . S#conpArgs ."](\$rowFirst);\n";
if ($result =~ /\$\%rglast/) {

$needl ast = 1;

$codeResult .= " ny \$I ${id} = \S$args[" . S#conpArgs ."](\$rowLast);\n";
}
$result =~ s/\$\ %\ w+)/ & epl aceResul t ($1, $func, $vars, $id, $argCount)/ge;
$codeBuild .= " ($result), # $fld\n";
$i d++,

}

$rtRes = Triceps::wapfess
"$nmynane: invalid result row type definition:",
sub { Triceps:: RowType->new @t def Res); };

176 Aggregation

${ $opt s- >{ saveRowTypeTo}} = $rtRes if (defined($opts->{saveRowTypeTo}));

In the same way the result computation is created, and remembers if any function wanted the fields from the first or last
row. And eventualy after all the functions have been processed, the result row type is created. If it was asked to save,
it gets saved.

build the conputation function
ny $conpText = "sub {\n";
$conpText .= " use strict;\n";

$conpText ny (\$table, \$context, \$aggop, \$opcode, \$rh, \$state, \@rgs) = \@;
\n";
$conpText .= return i f (\$context->groupSize()==0 || \$opcode == &Triceps:: OP_NOP);
\n";
$conpText .= $codelnit;
if ($needliter) {
$conpText .= " nmy \$npos = 0;\n";
$conpText .= " for (my \$rhi = \$context->begin(); !'\$rhi->isNull(); \$rhi =\
$cont ext - >next(\$rh|)) {\n";
$conpText .= " ny \$r ow = \ $rhi - >get Row(); \ n";
$compText .= $codeSt ep;
$conpText .= \ $npos++;\ n";
$conpText .= I\ n";
}
if ($needfirst) {
$conpText .= " ny \$rowFirst = \$context->begin()->get Rowm);\n";
}
if ($needlast) {
$conpText .= " ny \$rowLast = \$context->last()->getRow();\n";
}
$conpText .= $codeResul t;
$conpText .= \ $cont ext - >nakeAr r aySend(\ $opcode, \ n";
$conpText .= $codeBuil d;
$compText .=);\n";
$compText .= "}\n";

${ $opt s- >{ saveConput eTo}} = $conpText if (defined($opts->{saveConputeTo}));

The compute function gets assembled from the collected fragments. The optional parts get included only if some of the
functions needed them.

conpil e the conputation function
ny $conpFun = eval $conpText
or confess "$nyname: error in conpilation of the aggregation conputation:\n
$@unction text:\n"
Triceps:: Code: : nunal i gn($conpText, " ") . "\n";

build and add the aggregator
my $agg = Triceps::w apfess

"$nmynane: internal error: failed to build an aggregator type:",

sub { Triceps:: Aggregat or Type- >new($rt Res, $opts->{nane}, undef, $conpFun,
@onpArgs); };

Tri ceps: :wrapfess
"$nmynane: failed to set the aggregator in the index type:",
sub { $idx->set Aggregat or($agq); };

return $opts->{tabType};
}

Then the compute function is compiled. In caseif the compilation fails, the error message will include both the compilation
error and the text of the auto-generated function. Otherwise there would be no way to know, what exactly went wrong.

The guts of SimpleAggregator 177

WEell, since no user codeisincluded into the auto-generated function, it should never fail. Except if there is some bad code
in the aggregation function definitions. The compiled function and collected closures are then used to create the aggregator,
which should also never fail.

Thefunctionsthat translatethe$%var i abl e namesarebuilt after the same pattern but havethe different built-in variables:

sub replaceStep # ($varname, $func, $vars, $id, $argCount)

{
ny ($varnanme, $func, $vars, $id, $argCount) = @;

if ($varnanme eq 'argiter') {
confess "MSi npl eAggregator: internal error in definition of aggregation function
"$func', step conputation refers to '"argiter' but the function declares no argunents"
unl ess ($argCount > 0);
return "\ a{id}";
} elsif ($varname eq 'niter') {
return "\ $npos";
} elsif ($varnanme eq 'groupsize') {
return "\ $cont ext->groupSi ze()";
} elsif (exists $vars->{$varnane}) ({
return "\ v{id}_${varnane}"
} else {
confess "M/Si npl eAggregator: internal error in definition of aggregation function
"$func', step conputation refers to an unknown vari abl e ' $varnane'"
}
}

sub replaceResult # ($varnanme, $func, $vars, $id, $argCount)

{
ny ($varnanme, $func, $vars, $id, $argCount) = @;

if ($varname eq 'argfirst') {
confess "MSi npl eAggregator: internal error in definition of aggregation function
"$func', result conputation refers to '$varname' but the function declares no argunments"
unl ess ($argCount > 0);
return "\ f{id}";
} elsif ($varnanme eq 'arglast') {
confess "MSi npl eAggregator: internal error in definition of aggregation function
"$func', result conputation refers to '$varnanme' but the function declares no argunments"
unl ess ($argCount > 0);
return "\ $l ${id}";
} elsif ($varnanme eq 'groupsize') {
return "\ $cont ext - >groupSi ze()";
} elsif (exists $vars->{$varnane}) ({
return "\ v{id}_${varnane}"
} else {
confess "M/Si npl eAggregator: internal error in definition of aggregation function
"$func', result conputation refers to an unknown variable '$varnanme'"
}
}

They check for the references to the undefined variables and confess if any are found. That's it, the whole aggregator
generation.

Now let's look back at the printout of a generated computation function that has been shown above.. The aggregation
results were;

result => |
synbol => "string", "last", sub {$_[0]->get("synbol");},
id=>"int32", "last", sub {$_[0]->get("id");},
price => "float64", "avg", sub {$_[O0]->get("price");},

178 Aggregation

I,
Which produced the function body:

use strict;
ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;
return if ($context->groupSize()==0 || $opcode == &Triceps:: OP_NOP);
ny $v2_count = O;
ny $v2_sum = 0;
ny $npos = O;
for (ny $rhi = $context->begin(); !'$rhi->sNull(); $rhi = $context->next($rhi)) {
ny $row = $rhi->get Row();
field price=avg
ny $a2 = $args[2] ($row);
{ if (defined $a2) { $v2_sum += $a2; $v2_count++;, }; }
$npos++;
}
ny $rowLast = $context->| ast ()->get Row();
ny $10 = $args[0] ($rowLast);
ny $11 = $args[1] ($rowLast);
$cont ext - >makeAr r aySend($opcode,
($10), # synbol
($11), #id
(($v2_count == 0? undef : $v2_sum/ $v2_count)), # price

)

The fields get assigned the ids 0, 1 and 2. avg for the pri ce field is the only function here that requires the iteration,
and its variables are defined with the prefix $v2_. In the loop the function argument closure is called from $ar gs|[2] ,
and itsresult isstored in $a2 (again, 2 hereistheid of thisfield). Then a copy of the step computation for avg is copied
in a block, with the variables substituted. $%ar gi t er becomes $a2, $%sumbecomes $v2_sum $%ount becomes
$v2_count . Then the loop ends.

The functions make use of the last row, so $r owLast is computed. The values for the $%ar gl ast fields0 and 1 are
calculated in $1 0 and $I 1. Then the result row is created and sent from an array of substituted result snippets from all
thefields. That's how it all works together.

The guts of SimpleAggregator 179

180

Chapter 12. Joins
12.1. Joins variety

The joins are quite important for the relational data processing, and come in many varieties. And the CEP systems have
their own specifics. Basically, in CEP you want the joins to be processed fast. The CEP systems deal with the changing
model state, and have to process these changes incrementally.

A small change should be handled fast. It hasto use theindexes to find and update all the related result rows. Even though
you can make it just go sequentially through all the rows and find the relevant ones, like in acommon database, that's not
what you normally want. When something like this happens, the usual reaction is “wtf is my model suddenly so slow?’
following by an annoyingly long investigation into the reasons of the slowness, and then rewriting the model to make it
work faster. It's better to just prevent the slowness in the first place and make sure that the joins aways use an index. And
since you don't have to deal much with the ad-hoc queries when you write a CEP model, you can provide all the needed
indexes in advance very easily.

A particularly interesting kind of joinsin thisregard is the equi-joins. ones that join the rows by the equality of the fields
in them. They alow a very efficient index look-up. Because of this, they are popular in the CEP world. Some systems,
like Aleri, support only the equi-joins to start with. The other systems are much more efficient on the equi-joins than on
the other kinds of joins. At the moment Triceps follows the fashion of having the advanced support only for the equi-
joins. Even though the Sorted/Ordered indexes in Triceps should allow the range-based comparisons to be efficient too,
at the moment there are no table methods for the look-up of ranges, they are left for the future work. Of course, nothing
stops you from copying an equi-join template and modifying it to work by a dumb iteration. Just it would be slow, and
| didn't see much point in it.

There also are three common patterns of the join usage.

In the first pattern the rows sort of go by and get enriched by looking up some information from a table and tacking it
onto these rows. Sometimes not even tacking it on but maybe just filtering the data: passing through some of the rows
and throwing away the rest, or directing the rows into the different kinds of processing, based on the looked-up data. For
areference, in the Coral8 CCL this situation is called “ stream-to-window joins’. In Triceps there are no streams and no
windows, so | just call them the “lookup joins”.

In the second pattern multiple stateful tables are joined together. Whenever any of the tables changes, the join result also
changes, and the updates get propagated through. This can be done through lookups, but in reality it turns out that defining
manually the lookups for the every possible table change becomes tedious pretty quickly. This has to be addressed by the
automation.

In the third pattern the same table gets joined recursively, essentially traversing a representation of a tree stored in that
table. This actually doesn't work well with the classic SQL unless the recursion depth is strictly limited. There are SQL
extensions for the recursive self-joins in the modern databases but | haven't seen them in the CEP systems yet. Anyway,
the procedural approach tends to work for this situation much better than the SQLY one, so the templates tend to be of not
much help. I'll show atemplated and a manual example of this kind for comparison.

12.2. Hello, joins!

As usual, let me show a couple of little teasers before starting the long bottom-up discussion. Well eventually get by the
long way to the same examples, so here I'll show only some very short code snippets and basic explanations.

our $join = Triceps:: LookupJoi n->new(
name => "join",
| ef t FromLabel => $Il bTrans,
ri ght Tabl e => $t Accounts,

leftFields => ["lacct.*", ".*"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],

181

)

This is a lookup join that gets the incoming rows with transactions data from the label $I bTr ans, finds the account
trandation in the table $t Account s, and translates the external account representation to internal one on its output. The
join condition is an equivalent of the SQLy

on
| bTrans. acct Src = t Accounts. source
and | bTrans.acct Xtrld = t Accounts. ext ernal

The condition looks up the rowsin $t Account s using theindex that has the key fieldssour ce and ext er nal . Such
index must be already defined, or the join will refuse to compile.

The result fields will contain al the fields from $I bTr ans except those starting with “acct” plus the field i nt er nal
from $t Account s that becomes renamed to acct .

Next goes atablejoin:

our $join = Triceps::Joi nTwo- >new(
name => "join",
| eft Tabl e => $t Posi ti on,
ri ght Tabl e => $t ToUsd,
byLeft => ["date", "currency"],
type => "inner",

It joins the tables $t Posi t i on and $t ToUsd, with the inner join logic. The join condition is on the fields “date” and
“currency” being equal in rows in both tables.

12.3. The lookup join, done manually

First let'slook at alookup done manually. It would also establish the baseline for the further joins.

For the background of the model, |et's consider the trade information coming in from multiple sources. Each source system
has its own designation of the accounts on which the trades happen but ultimately they are the same accounts. So thereis
atablethat contains the translation from the account designations of various external systemsto our system's own internal
account identifier. This gets described with the row types:

our $rtinTrans = Triceps:: Rowlype->new(# a transaction received
id=>"int32", # the transaction id
acctSrc => "string", # external systemthat sent us a transaction
acctXtrld => "string", # its nane of the account of the transaction
amount => "int32", # the amount of transaction (int is easier to check)

)

our $rtAccounts = Triceps:: RowType->new # account translation map
source => "string", # external systemthat sent us a transaction
external => "string", # its nane of the account in the transaction
internal => "int32", # our internal account id

)

Other than those basics, the rest of information is only minimal, to keep the examples smaller. Even the trade ids are
expected to be global and not per the source systems (which is not realistic but saves another little bit of work).

The accounts table can be indexed in multiple ways for multiple purposes, say:

our $ttAccounts = Triceps:: Tabl eType- >new $rt Accounts)
- >addSubl ndex ("l ookupSrcExt", # quick | ook-up by source and external id
Tri ceps:: | ndexType- >newHashed(key => ["source", "external"])

)

182 Joins

->addSubl ndex("iterateSrc", # for iteration in order grouped by source
Triceps:: | ndexType- >newHashed(key => ["source"])
- >addSubl ndex("iterateSrcExt",
Triceps:: I ndexType->newHashed(key => ["external"])
)

- >addSubl ndex ("1 ookupl nt Group", # quick |ook-up by internal id (to nultiple externals)
Triceps:: I ndexType->newHashed(key => ["internal"])
- >addSubl ndex ("1 ookupl nt", Triceps::|ndexType->newrifo())

)

$tt Accounts->initialize();

For our purpose of joining, thefirst, primary key isthe way to go. Using the primary key also has the advantage of making
sure that there is no more than one row for each key value.

The first manual lookup example will just do the filtering: find, whether there is a match in the translation table, and if so
then pass the row through. The example goes as follows:

our $udoin = Triceps::Unit->new"uJoin");
our $t Accounts = $uJoi n- >makeTabl e($tt Accounts, "tAccounts");

my $l bFilterResult = $uJoi n- >makeDummylLabel ($rtInTrans, "IbFilterResul t");
my $l bFilter = $uJoi n->nmakelLabel ($rtInTrans, "lIbFilter", undef, sub {
ny ($label, $rowop) = @;
ny $row = $rowop- >get Row() ;
ny $rh = $t Account s->f i ndBy(
source => $row >get ("acctSrc"),
external => $row >get ("acctXtrld"),
);
if (!$rh->isNull()) {
$uJoi n->cal | ($l bFi | t er Resul t - >adopt ($r owop)) ;
}
1)

label to print the changes to the detailed stats
makePrint Label ("I bPrint", $IbFilterResult);

whi | e(<STDI N>) {

chonp;
my @ata = split(/,/); # starts with a conmand, then string opcode
ny $type = shift @lata;

if ($type eq "acct") {

$uJoi n- >makeArrayCal | ($t Account s- >get | nput Label (), @lata);
} elsif ($type eq "trans") {

$uJoi n- >makeArrayCal | ($l bFilter, @lata);
}

$uJoi n->drai nFrame(); # just in case, for conpleteness

}

Thefi ndBy() iswhere the join actualy happens: the lookup of the data in a table by values from another row. Very
similar to what the basic window example in Section 9.1: “Hello, tables!” (p. 81) was doing before. It's fi ndBy(),
without the need for f i ndBy| dx () , becausein this case theindex type used in the accountstableisitsfirst leaf index, to
whichfi ndBy() defaults. After that the fact of successful or unsuccessful lookup is used to passthe original row through
or throw it away. If the found row were used to pick some fields from it and stick them into the result, that would be a
more complete join, more like what you often expect to see.

And hereis an example of the input processing:

acct, OP_I NSERT, sour cel, 999, 1

The lookup join, done manually 183

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

I bFilterResult OP_I NSERT id="1" acct Src="sourcel" acctXtrld="999"
amount =" 100"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

| bFilterResult OP_I NSERT i d="2" acct Src="source2" acct Xtrl d="ABCD'
amount =" 200"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

I bFilterResult OP_DELETE id="3" acct Src="source2" acctXtrld="QN\ERTY"
amount =" 200"

acct, OP_DELETE, sourcel, 999, 1

It starts with populating the accounts table. Then the transactions that find the match pass, and those who don't find don't
pass. If more of the account translations get added later, the transactions for them start passing but as you can see, the
result might be slightly unexpected: you may get a DELETE that had no matching previous INSERT, as happened for
the row with id=3. This happens because the lookup join keeps no history on its left side and can't react properly to the
changes to the table on the right. Because of this, the lookup joins work best when the reference table gets pre-popul ated
in advance and then stays stable.

12.4. The LookupJoin template

When ajoin hasto produce the new rows, with the data from both the incoming row and the oneslooked up in the reference
table, this can aso be done manually but may be more convenient to do with the LookupJoin template. The translation of
account to the internal ids can be done like this:

our $join = Triceps:: LookupJoi n- >new(
unit => $uJdoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Accounts,
rightldxPath => ["] ookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
isLeft => 1,
); # would confess by itself on an error

label to print the changes to the detailed stats
mekePri nt Label ("I bPrint", $joi n->get Qut put Label ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a cormmand, then string opcode
my $type = shift @lata;

if ($type eq "acct") {

$uJoi n- >makeArrayCal | ($t Account s- >get | nput Label (), @lata);
} elsif ($type eq "trans") {

$udoi n- >makeArrayCal | ($j oi n->get | nput Label (), @ata);

}

$uJoi n->drai nFrame(); # just in case, for conpleteness

}

The join gets defined in the option name-value format. The options * unit” and “name” are as usual.

The incoming rows are always on the left side, the table on the right. LookupJoin can do either the inner join or the |eft
outer join (since it does not react to the changes of the right table and has no access to the past data from the left side, the
full and right outer joins are not available). In this case the option “isLeft => 1" selects the left outer join. The left outer
join also happens to be the default if this option is not used.

184 Joins

Theleft sideis described by the option “leftRowType’, and causes thejoin'sinput label of this row typeto be created. The
input label can be found with $j oi n- >get | nput Label ().

The right side is a table, specified in the option “rightTable”. The lookups in the table are done using a combination of
an index and the field pairing. The option “by” provides the field pairing. It contains the pairs of field names, one from
the left, and one from the right, for the equal fields. They can be separated by “, ” too, but “=>" feels more idiomatic to
me. These fields from the |eft are trandated to the right and are used for lookup through the index. The index is specified
with the path in the option “rightldxPath”. This option is optiona: if it's missing, the template will automatically find the
index that matches the key fields. Theindex must exist though, if it doesn't exist, LookupJoin can't create it and can't work
without it either. The index must be a Hashed index.

Thereisno particular reason for it not being a Sorted/Ordered index, other that the get Key() call doesnot work for these
indexes yet, and that's what the LookupJoin uses to check that the right-side index key matches the join key in “by”. The
order of thefieldsin the option “by” and in the index may vary but the set of the fields must be the same.

The index may be either a leaf (as in this example) or non-leaf. If it's aleaf, it could look up no more than one row per
key, and LookupJoin uses thisinternally for alittle optimization. Otherwise LookupJoin is capable of producing multiple
result rows for one input row.

Finally, thereisthe result row. It is built out of the two original rows by picking the fields according to the options “|eft-
Fields’ and “rightFields’. If either option is missing, that means “take all the fields’. The format of these optionsis from
Triceps::Fields::filterToPairs() that has been described in Section 10.7: “Result projection in the tem-
plates’ (p. 136) . Sointhisexample["internal /acct”] means: passthefieldi nt er nal butrenameittoacct.

Remember that the field names in the result must not duplicate. It would be an error. If the duplications happen, the most
general solution isto use the substitution syntax to rename some of the fields.

A fairly common usageinjoinsisto just give the unique prefixesto the left-side and right-side fields. This can be achieved
with:

leftFields => ['.*/left_$&],
rightFields => ['.*/right_$&],

The $& in the substitution gets replaced with the whole matched field name. There is also another way to solve a specid
case of duplication that will be shown in a moment.

The option “fieldsLeftFirst” determines, which side will go first in the result. By default it's set to 1 (asin this example),
and the left side goesfirst. If set to 0, the right side would go first.

This setup for the result row typesis somewhat clumsy but it's a reasonable first attempt.

Now, having gone through the description, an example of how it works:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

join.out OP_INSERT id="1" acct Src="sourcel" acctXtrld="999"
amount =" 100" acct="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT id="2" acctSrc="source2" acctXtrl d="ABCD"
amount =" 200" acct="1"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

join.out OP_INSERT id="3" acctSrc="source2" acctXtrld="Q\ERTY"
amount =" 200"

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

join.out OP_DELETE id="3" acctSrc="source2" acctXtrld="QN\ERTY"
amount =" 200" acct="2"

The LookupJoin template 185

acct, OP_DELETE, sourcel, 999, 1

Same as before, first the accounts table gets populated, then the transactions are sent. If an account is not found, this left
outer join still passes through the original fields from the left side. Adding an account later doesn't help the rowops that
already went through but the new rowops will see it. The same goes for deleting an account, it doesn't affect the past
rowops either.

Now let's take another look at the field duplication problem. The most typical case of duplication isin the key fields, when
the key fields on both sides are named the same. If al the fields from both left and right sides were to be included (which
isthe default), the key fields would be included twice, with the same names, and cause a conflict. LookupJoin provides a
solution for this specia case, shown in the following example:

our $rtTrans = Triceps:: Rowlype->new(# a transaction received
id =>"int32", # the transaction id
source => "string", # external systemthat sent us a transaction
external => "string", # its name of the account of the transaction
amount => "int32", # the amount of transaction (int is easier to check)

)
our $t Accounts = $uJoi n- >makeTabl e($tt Accounts, "tAccounts");

our $join = Triceps::LookupJoi n->new
unit => $uJdoin,
nane => "join",
| ef t RowType => $rt Trans,
ri ght Tabl e => $t Accounts,

byLeft => ["source", "external"],
fiel dsDropRi ght Key => 1,
isLeft => 1,

); # would confess by itself on an error

The example does the exact same thing asthe last one, only here the fieldsin the incoming rows have been named the same
asinthetable. Thismadethe option “byL eft” the more convenient way to specify thejoin condition. And thistimethereare
no explicit options to select the result fields, all of them are included. But that would have included the fields “ source” and
“external” twice, which isillegal. The option “fieldsDropRightKey” set to 1 takes care of that: it automatically removes
the key fields on the right side from the result. This example produces the output that is the same as the last one, only
with the different field names:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

join.out OP_INSERT id="1" source="sourcel" external ="999" anmount="100"
internal ="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT id="2" source="source2" external="ABCD"
anount =" 200" internal ="1"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

join.out OP_INSERT id="3" source="source2" external ="QNERTY"
armount =" 200"

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

join.out OP_DELETE id="3" source="source2" external ="QNERTY"
anount =" 200" internal ="2"

acct, OP_DELETE, sourcel, 999, 1

The left-side data can al so be specified in another way: the option “leftFromLabel” provides alabel whichin turn provides
both the input row type and the unit. You can still specify the unit option as well but it must match the one in the label.
This is driven internally by Tri ceps: : Opt : : handl eUni t TypeLabel (), described in Section 10.5: “Template
options” (p. 124) , so it follows the same rules. The join still has its own input label but it gets automatically chained to
the one in the option. For an example of such ajoin:

186 Joins

our $l bTrans = $uJdoi n- >nakeDunmylLabel ($rtInTrans, "I bTrans");

our $join = Triceps::LookupJoi n- >new(
name => "join",
| ef t FromLabel => $Il bTrans,
ri ght Tabl e => $t Accounts,
leftFields => ["id", "anmount"],
fieldsLeftFirst => 0,
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
isLeft => 0,
); # would confess by itself on an error

label to print the changes to the detailed stats
nakePri nt Label ("I bPrint", $join->get QutputLabel ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "acct") {

$uJoi n- >makeArrayCal | ($t Account s->get | nput Label (), @lata);
} elsif ($type eq "trans") {

$uJoi n- >makeArrayCal | ($l bTrans, @lata);

}

$udoi n->drai nFrane(); # just in case, for conpleteness

}

The other options demonstrate the possibilities described in the last post. This time it's an inner join, the result has the
right-side fields going first, and the left-side fields are filtered in the result by an explicit list of fields to pass. The right-
side index isfound automatically.

Another way to achieve the samefiltering of the left-side fieldswould be by throwing away everything starting with “acct”
and passing through the rest:

leftFields => ["lacct.*", ".*"],
And hereis an example of arun:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

join.out OP_INSERT acct="1" id="1" anount="100"
trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT acct="1" id="2" anopunt="200"
trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

join.out OP_DELETE acct="2" id="3" anount="200"
acct, OP_DELETE, sourcel, 999, 1

Theinput dataisthe same asthelast time, but the result isdifferent. Sinceit'san inner join, the rowsthat don't find amatch
don't pass through. And of course the fields are ordered and subsetted differently in the result.

The next example loses all connection with reality, it just serves to demonstrate another ability of LookupJoin: matching
multiple rows on the right side for an incoming row. The situation itself is obviously useful and normal, just it's not what
normally happens with the account id trandation, and | was too lazy to invent another realistically-looking example.

our $ttAccounts2 = Triceps:: Tabl eType->new($rt Account s)

The LookupJoin template 187

->addSubl ndex("iterateSrc", # for iteration in order grouped by source
Triceps:: | ndexType- >newHashed(key => ["source"])
- >addSubl ndex(" | ookupSr cExt ",
Triceps:: I ndexType->newHashed(key => ["external"])
- >addSubl ndex("groupi ng", Triceps::|ndexType->newFifo())
)
)

$tt Accounts2->initialize();
our $t Accounts = $udoi n->makeTabl e($tt Accounts2, "tAccounts");

our $join = Triceps::LookupJoi n- >new(
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Accounts,

rightldxPath => ["iterateSrc", "lookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],

#saveJoi nerTo => \ $code,
); # would confess by itself on an error

Themainloop isunchanged from thefirst LookupJoin example, so | won't copy it here. Just for something different, thejoin
index hereis nested, and its path consists of two elements. It's not aleaf index either, with one FIFO level under it. It could
also have been found automatically. And when the “isLeft” is not specified explicitly, it defaultsto 1, making it aleft join.

The example of arun uses adightly different input, highlighting the ability to match multiple rows:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

acct, OP_I NSERT, sour ce2, ABCD, 10

acct, OP_I NSERT, sour ce2, ABCD, 100

trans, OP_I NSERT, 1, sourcel, 999, 100

join.out OP_INSERT id="1" acct Src="sourcel" acctXtrld="999"
anmount =" 100" acct="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT id="2" acct Src="source2" acct Xtrld="ABCD"
anount =" 200" acct="1"

join.out OP_INSERT id="2" acct Src="source2" acct Xtrld="ABCD"
anount =" 200" acct="10"

join.out OP_INSERT id="2" acct Src="source2" acct Xtrld="ABCD"
anount =" 200" acct="100"

trans, OP_I NSERT, 3, sour ce2, Q\ERTY, 200

join.out OP_INSERT id="3" acctSrc="source2" acctXtrld="QN\ERTY"
anount =" 200"

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, source2, Q\ERTY, 200

join.out OP_DELETE id="3" acctSrc="source2" acctXtrld="QN\ERTY"
anount =" 200" acct="2"

acct, OP_DELETE, sourcel, 999, 1

When arow matches multiple rows in the table, it gets multiplied. The join function iterates through the whole matching
row group, and for each found row creates aresult row and calls the output label with it.

Now, what if you don't want to get multiple rows back even if they are found? Of course, the best way is to just use a
leaf index. But once in awhile you get into situations with the denormalized data in the lookup table. Y ou might know in
advance that for each row in an index group a certain field would be the same. Or you might not care, what exact value
you get aslong asit's from the right group. But you might really not want the input rows to multiply when they go through
the join. LookupJoin has a solution:

188 Joins

our $join = Triceps::LookupJoi n- >new(
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Accounts,

rightldxPath => ["iterateSrc", "lookupSrcExt"],
rightFields => ["internal/acct"],

by => ["acctSrc" => "source", "acctXtrld" => "external"],
limtOne => 1,

); # would confess by itself on an error

The option “limitOne” changes the processing logic to pick only the first matching row. It aso optimizes the join function.
If “limitOne” is not specified explicitly, the join constructor deduces it magically by looking at whether the join index isa
leaf or not. Actually, for aleaf index it would always override “limitOne” to 1, even if you explicitly set it to O.

With the limit, the same input produces a different output:

acct, OP_I NSERT, sour cel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

acct, OP_I NSERT, sour ce2, ABCD, 10

acct, OP_I NSERT, sour ce2, ABCD, 100

trans, OP_I NSERT, 1, sour cel, 999, 100

join.out OP_INSERT id="1" acctSrc="sourcel" acctXtrl d="999"
amount =" 100" acct="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

join.out OP_INSERT id="2" acctSrc="source2" acctXtrl d="ABCD"
amount =" 200" acct="1"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

join.out OP_INSERT id="3" acctSrc="source2" acctXtrld="Q\ERTY"
amount =" 200"

acct, OP_I NSERT, sour ce2, Q\ERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

join.out OP_DELETE id="3" acctSrc="source2" acctXtrld="Q\ERTY"
amount =" 200" acct="2"

acct, OP_DELETE, sourcel, 999, 1

Now it just picks the first matching row instead of multiplying the rows.

12.5. Manual iteration with LookupJoin

Sometimes you might want to just get the list of the resulting rows from LookupJoin and iterate over them by yourself,
rather than haveit call the labels. To be honest, thislooked kind of important when | wrote LookupJoin first, but by now |
don't seeawholelot of useinit. By now, if you want to do amanual iteration, calling f i ndBy () and then iterating looks
like amore useful option. But at the time therewasnof i ndBy/() , and this feature came to exist. Here is an example:

our $join = Triceps:: LookupJoi n->new(
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Accounts,
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
automatic => 0,
); # would confess by itself on an error

label to print the changes to the detailed stats
ny $l bPrint = nakePrintLabel ("I bPrint", $join->getCutputlLabel ());

whi | e(<STDI N>) {

Manual iteration with LookupJoin 189

chonp;
ny @ata split(/,/); # starts with a command, then string opcode
ny $type shift @lata;
if ($type eq "acct") {

$uJoi n- >makeArrayCal | ($t Account s->get | nput Label (), @lata);
} elsif ($type eq "trans") {

ny $op = shift @lata; # drop the opcode field

ny $trans = $rtlnTrans->makeRowArray(@lat a) ;

ny @ows = $joi n->l ookup($trans);

foreach ny $r (@ows) {

$uJoi n->cal | ($I bPri nt - >makeRowop($op, $r));
}

}

$udoi n->drai nFrane(); # just in case, for conpleteness

}

It copies the first LookupJoin example, only now with a manual iteration. Once the option “automatic” is set to O for the
join, the method $j oi n- >l ookup() becomesavailableto perform the lookup and return the result rowsin an array (the
data sent to the input label keeps working as usual, sending the result rows to the output label). This involves the extra
overhead of keeping al the result rows (and there might be lots of them) in an array, so by default the join is compiled
in an automatic-only mode.

Since | ookup() returns rows, not rowops, and knows nothing about the opcodes, those had to be handled separately
around the lookup. Thereis away to achieve a similar result using the streaming functions that returns the rowops. It will
be described in Section 15.8: “ Streaming functions and template results’ (p. 268) .

Theresult isthe same as for the first example, only the name of the result label differs:

acct, OP_I NSERT, sourcel, 999, 1

acct, OP_I NSERT, sour cel, 2011, 2

acct, OP_I NSERT, sour ce2, ABCD, 1

trans, OP_I NSERT, 1, sour cel, 999, 100

I bPrint OP_INSERT id="1" acctSrc="sourcel"” acct Xtrld="999"
anmount =" 100" acct="1"

trans, OP_I NSERT, 2, sour ce2, ABCD, 200

I bPrint OP_INSERT id="2" acctSrc="source2" acctXtrl|d="ABCD'
anmount =" 200" acct="1"

trans, OP_I NSERT, 3, sour ce2, QAERTY, 200

I bPrint OP_INSERT id="3" acctSrc="source2" acctXtrld="Q\ERTY"
anmount =" 200"

acct, OP_I NSERT, sour ce2, QAERTY, 2

trans, OP_DELETE, 3, sour ce2, QAERTY, 200

I bPrint OP_DELETE id="3" acctSrc="source2" acctXtrld="Q\ERTY"
anmount =" 200" acct="2"

acct, OP_DELETE, sourcel, 999, 1

The print label is still connected to the output label of the LookupJoin, but it's done purely for the convenience of its
creation. Since no rowops get sent to the LookupJoin's input, none get to its output, and none get from there to the output
label. Instead the main loop creates and sends the rowops directly to the output Iabel when it iterates through the lookup
results. Because of this the label name in the output is the name of the output label.

12.6. The key fields of LookupJoin

Thekey fields are the ones that participate in the join condition. | use these termsinterchangeably because by the definition
of LookupJoin, these fields must be the key fields in the join index in the right-side table. LookupJoin has a few more
facilities for their handling that haven't been shown yet.

First, the join condition can be specified as the Tri ceps: : Fiel ds::filterToPairs() patternsin the option
“byLeft”. The options “by” and “byLeft” are mutually exclusive and one of them must be present. The condition

190 Joins

by => ["acctSrc" => "source", "acctXtrld" => "external"],

can be also specified as:

byLeft => ["acctSrc/source", "acctXtrld/external"],

The option name “byLeft” says that the pattern specification is for the fields on the left side (there is no symmetric
“byRight”). The substitutions produce the matching field names for the right side. Unlike the result pattern, here the fields
that do not find a match do not get included in the key. It'sasif animplicit"! . *" gets added at theend. In fact,"! . *"

really does get added implicitly at the end.

Of course, for the example above either option doesn't make much difference. It starts making the difference when the
key fields follow a pattern. For example, if the key fields on both sides have the namesacct Sr c and acct Xt r | d, the
specification with the “ byL eft” becomes a little simpler:

byLeft => ["acctSrc", "acctXtrld"],
Even more so if the key islong, common on both sides, and al the fields have a common prefix. Such as:

k_Account System
k_Account | d

k_I nstrument System
k_lI nstrumentld
k_Transacti onDat e
k_Settl ement Dat e

Then the join condition can be specified simply as:

byLeft =>["k_.*"],

If say the settlement date doesn't matter for a particular join, it can be excluded:

byLeft => ["!k_SettlenentDate", "k_.*"],

If the right side represents a swap of securities, it might have two partsto it, each describing its half with its key:

Bor r owAccount Syst em
Bor r owAccount I d

Bor r ow nstrunent System
Borrowl nstrunent|d
Bor r owTr ansact i onDat e
Bor rowSet t | enent Dat e
LoanAccount Syst em
LoanAccount | d

Loanl nst runent System
Loanl nstrunent | d
LoanTr ansacti onDat e
LoanSett!| enent Dat e

Then the join of the one-sided rows with the borrow part condition can be done using:
byLeft =>1 'k_(.*)/Borrows$l'],
The key patterns make the long keys easier to drag around.

Second, key fields of LookupJoin don't have to be of the same type on the left and on theright side. Since the key building
for lookup is done through Perl, the key values get automatically converted as needed.

A caveat isthat the conversion might be not exactly direct. If a string gets converted to a number, then any string values
that do not look like numbers will be converted to 0. A conversion between a string and a floating-point number, in either

The key fields of LookupJoin 191

direction, is likely to lose precision. A conversion between int64 and int32 may cause the upper bits to be truncated. So
what gets looked up may be not what you expect.

I'm not sureyet if | should add the requirement for the types being exactly the same. The automatic conversions seemto be
convenient, just usethemwith care. | suppose, whenthejoinswill get eventually implemented in the C++ code, thisfreedom
would go away becauseit's much easier and more efficient in C++ to copy the field values as-is than to convert them.

The only thing currently checked is whether afield is represented in Perl as a scalar or an array, and that must match on
the left and on the right. Note that the array ui nt 8]] gets represented in Perl asa scalar string, soan ui nt 8[] field can
be matched with other scalars but not with the other arrays.

Third, the key fields have the problem of duplication. The LookupJdoin is by definition an equi-join, it joins together the
rows that have the same valuesin a set of key fields. If all the fields from both sides are to be included in the result, they
key values will be present in it twice, once from the left side, once from the right side. Thisis not what is usually wanted,
and the good practice isto let these fields through from one side and filter out from the other side.

Letting these fields through on the left side is usually the better choice. For the inner joins it doesn't really matter but for
the left outer joins it works much better than the with letting through the fields from the right side. The reason isthat when
the join doesn't find the match on the right side, all the right-side fields will be NULL. If you pass through the key fields
only from the right side, they will contain NULL, and thisis probably not what you want.

However if for some reason, be it the order of the fields or the better field types on the right side, you really want to pass
the key fields only from the right side, you can. LookupJoin provides a special magic act enabled by the option

fieldsMrrorKey => 1

Then if the row is not found on the right side, a special right-side row will be created with the key fields copied from the
left side, and it will be used to produce the result row. With “fieldsMirrorKey” you are guaranteed to always have the key
values present on the right side.

12.7. A peek inside LookupJoin

| won't be describing in the details the internals of LookupJoin. They seem a hit too big and complicated. Partially it's
because the code is of an older origin, and not using all the newer calls. Partially it's because when | wrote it, I've tried
to optimize by trandating the rows to an array format instead of referring to the fields by names, and that made the code
more tricky. Partialy, the code has grown more complex due to all the added options. And partially the functionality just
isalittle tricky by itself.

But, for debugging purposes, the LookupJoin constructor can return the auto-generated code of the joiner function. It's
done with the option “saveJoinerTo":

savelJoi ner To => \ $code,

This will cause the auto-generated code to be placed into the variable $code. I've collected a few such examplesin this
section. They provide aglimpseinto theinternal workings of thejoiner. It's definitely a quite advanced topic, but it'shel pful
if you want to know, what isreally going on in there.

Thejoiner code from the example

our $join = Triceps:: LookupJoi n->new(
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Accounts,
rightldxPath => ["] ookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
isLeft => 1,
); # would confess by itself on an error

192 Joins

that was shown first in the Section 12.4: “The LookupJoin template” (p. 184) isthis:

sub # ($inLabel, $rowop, $self)

{
ny ($inLabel, $rowop, $self) = @;

#print STDERR "DEBUGX LookupJoin " . $self->{name} . " in: ", $rowop->printP(), "\n";

$opcode = $rowop- >get pcode(); # pass the opcode
$row = $rowop- >get Row() ;

3

@eftdata = $row >toArray();

ny
ny
ny $resRowType = $sel f->{resul t RowType};
ny $resLabel = $sel f->{out putLabel };

ny

$l ookuprow = $sel f->{ri ght RowType} - >makeRowHash(
"source" => $leftdatall],
"external" => $leftdatal?2],

)

#print STDERR "DEBUGX " . $sel f->{nanme} . " lookup: ", $lookuprow >printP(), "\n";
ny $rh = $sel f->{rightTabl e}->findl dx($sel f->{rightldxType}, $I ookuprow);

nmy @ightdata; # fields fromthe right side, defaults to all-undef, if no data found
my @esult; # the result rows will be collected here

if (!$rh->isNull()) {
"\'n

}

@ightdata = $rh->get Row() - >t oArray();

ny @esdata = ($leftdatal0],
$l eftdatal 1],
$l eftdatal 2],
$l eftdatal 3],
$rightdatal 2],

);
nmy $resrowop = $reslLabel - >makeRowop($opcode, $resRowType- >makeRowAr ray(@ esdat a)) ;
#print STDERR "DEBUGKX " . $self->{name} . " +out: ", $resrowop->printP(), "\n";

$resLabel - >get Uni t () ->cal | ($resrowop) ;

}
From the example with the manual iteration:

our $join = Triceps::LookupJoi n- >new(
unit => $udoin,
nane => "join",
| ef t RowType => $rtlInTrans,
ri ght Tabl e => $t Account s,
rightldxPath => ["] ookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],
automatic => 0,
); # would confess by itself on an error

comes this code:

sub # ($self, $row

ny ($self, $row = @;

#print STDERR "DEBUGX " . $self->{name} . " found data: " . $rh->get Row)->printP()

A peek inside LookupJoin

193

#print STDERR "DEBUGX LookupJoin " . $self->{name} . " in: ", $row>printP(), "\n";
ny @eftdata = $row >toArray();
ny $l ookuprow = $sel f->{ri ght RowType} - >makeRowHash(

"source" => $leftdata[l],
"external" => $leftdatal?2],

)

#print STDERR "DEBUGX " . $sel f->{nanme} . " lookup: ", $l ookuprow >printP(), "\n";
ny $rh = $sel f->{rightTabl e}->findl dx($sel f->{rightldxType}, $l ookuprow);

ny @ightdata; # fields fromthe right side, defaults to all-undef, if no data found
ny @esult; # the result rows will be collected here

if (1$rh->isNull()) {

#print STDERR "DEBUGX " . $self->{nane} . " found data: " . $rh->get Row)->printP()
II\ r.]II;
@ightdata = $rh->get Rowm)->t oArray();
}
ny @esdata = ($leftdata[0],
$leftdatal 1],
$l ef t dat a[2],
$l ef t dat a[3],
$rightdatal 2],
push @esult, $self->{resultRowlType}->nakeRowArray(@ esdata);
#print STDERR "DEBUGX " . $self->{nane} . " +out: ", $result[S$#result]->printP(),
II\ r.]II;
return @esult;

}

It takes different arguments because now it's not an input label handler but a common function that gets called from both
the label handler and the | ookup() method. And it collects the rows in an array to be returned instead of immediately
passing them on.

From the example with multiple rows matching on the right side

our $join = Triceps::LookupJoi n->new
unit => $udoin,
name => "join",
| ef t RowType => $rtlnTrans,
ri ght Tabl e => $t Account s,

rightldxPath => ["iterateSrc", "lookupSrcExt"],
rightFields => ["internal/acct"],
by => ["acctSrc" => "source", "acctXtrld" => "external"],

); # would confess by itself on an error
comes this code:

sub # ($inLabel, $rowop, $self)

{
ny ($inLabel, $rowop, $self) = @;
#print STDERR "DEBUGX LookupJoin " . $self->{name} . " in: ", $rowop->printP(), "\n";

ny $opcode = $rowop->get OQpcode(); # pass the opcode
ny $row = $rowop->get Row() ;

ny @eftdata = $row >toArray();

194 Joins

ny $resRowType = $sel f->{resul t RowType};
ny $reslLabel = $sel f->{outputLabel };

ny $l ookuprow = $sel f->{ri ght RowType} - >makeRowHash(
"source" => $leftdatall],
"external" => $leftdatal?2],

)

#print STDERR "DEBUGX " . $sel f->{nanme} . " lookup: ", $l ookuprow >printP(), "\n";
ny $rh = $sel f->{rightTabl e}->findl dx($sel f->{rightldxType}, $l ookuprow);

ny @ightdata; # fields fromthe right side, defaults to all-undef, if no data found
ny @esult; # the result rows will be collected here

if ($rh->isNull()) {
#print STDERR "DEBUGX " . $sel f->{name} . " found NULL\n";

ny @esdata = ($leftdata[0],

$l eftdata[1],

$l ef t dat a[2],

$l ef t dat a[3],

$rightdatal 2],

ny $resrowop = $reslLabel - >makeRowop($opcode, $resRowType- >nakeRowArray(@ esdata)) ;
#print STDERR "DEBUGX " . $self->{name} . " +out: ", $resrowop->printP(), "\n";
$resLabel - >get Unit () ->cal | ($resrowop);

} else {

#print STDERR "DEBUGX " . $self->{nane} . " found data: " . $rh->get Row)->printP()
u\ nn;

ny $endrh = $sel f->{right Tabl e} - >next G oupl dx($sel f->{iterl dxType}, $rh);

for (; !$rh->sane($endrh); $rh = $sel f->{right Tabl e}->next|dx($sel f->{rightldxType},
$rh)) {

@ightdata = $rh->get Rowm)->toArray();

ny @esdata = ($leftdata[0],

$leftdatal 1],

$l eftdatal 2],

$l ef t dat a[3],

$rightdatal 2],

ny $resrowop = $reslLabel - >makeRowop($opcode, $resRowType- >nakeRowArray(@ esdata)) ;

#print STDERR "DEBUGX " . $self->{name} . " +out: ", $resrowop->printP(), "\n";

$resLabel - >get Unit () ->cal | ($resrowop);

}
}
}

It's more complicated in two ways: If amatch isfound, it hasto iterate through the whole matching group. And if the match
is not found, it still has to produce aresult row for the left join with a separate code fragment.

12.8. JoinTwo joins two tables

Fundamentally, joining the two tables is kind of like the two symmetrical copies of LookupJoin, each of them reacting to
the changesin one table and doing look-ups in another table. For al | can tell, the CEP systems with the insert-only stream
model tend to start with the assumption that the LookupJoin (or whetever they cal it) is good enough. Then it turns out
that manually writing the join twice where it can be done once is a pain. So the table-to-table join gets added. Then the
interesting nuances crop up, since a correct table-to-table join has more to it than just two stream-to-table joins. Then it
turns out that it would be real convenient to propagate the deletes through the join, and that gets added as a specia feature
behind the scenes.

JoinTwo joins two tables 195

In Triceps, JoinTwo isthe template for joining the tables. And actually it istranslated under the hood to two L ookupJoins,
but it has more on top of them.

In acommon database ajoin query causes ajoin plan to be created: on what table to iterate, and in which to look up next.
A CEP system deals with the changing data, and ajoin has to react to the data changes on each of itsinput tables. It must
have multiple plans, one for starting from each of the tables. And essentially a LookupJoin embodies such a plan, and
JoinTwo makes two of them.

Why only two? Because it's the minimal usable number. The join logic is tricky, so it's better to work out the kinks on
something simpler first. And it still can be scaled to many tables by joining them in stages. It's not quite as efficient as a
direct join of multiple tables, because the result of each stage has to be put into atable, but it does the job.

Il be doing the demonstrations of the table joins on an application example from the area of stock lending. Think of a
large multinational broker that wantsto keep track of itslending activities. It has many customersto whom the stock can be
loaned or from whom it can be borrowed. Thisinformation comesasthe records of positions, of how many sharesareloaned
or borrowed for each customer, and at what contractual price. And sincethe clientsare from all around the world, the prices
may bein different currencies. A simplified and much shortened version of the position information may look like this:

our $rtPosition = Triceps:: RowlType->new # a custoner account position
date => "int32", # as of which date, in format YYYYMVDD
custonmer => "string", # custonmer account id
synbol => "string", # stock synbol
quantity => "float64", # nunber of shares
price => "float64", # share price in |local currency
currency => "string", # currency code of the price

)

Then we want to aggregate these data in different ways, getting the broker-wide summaries by the symbol, by customer
etc. The aggregation is updated as the business day goes on. At the end of the business day the state of the day freezes,
and the new day's initial data is loaded. That's why the business date is part of the schema. If you wonder, the next day's
initial data is usually the same as at the end of the previous day, except where some contractual conditions change. The
detailed position datais thrown away after afew days, or even right at the end of the day, but the aggregation results from
the end of the day are kept for alonger history.

There is a problem with summing up the monetary values: they come in different currencies and can not be added up
directly. If wewant to get thiskind of summaries, we havetotranslate all of themto asinglereference currency. That'swhat
the sample joins will be doing: finding the translation rates to the US dollars. The currency rates come in the trandation
schema:

our $rtToUsd = Triceps:: Rowlype->new(# a currency conversion to USD
date => "int32", # as of which date, in format YYYYMVDD

currency => "string", # currency code

toUsd => "float64", # nultiplier to convert this currency to USD

)

Since the currency rates change al the time, to make sense of a previous day's position, the previous day's rates need to
be kept around, and so the rates are also marked with a date.

Having the mood set, hereis the first example of amodel with an inner join:

exchange rates, to convert all currencies to USD
our $ttToUsd = Triceps:: Tabl eType- >new($rt ToUsd)
- >addSubl ndex("pri mary",
Triceps:: | ndexType- >newHashed(key => ["date", "currency"])

- >addSubl ndex("byDate", # for cleaning by date
Triceps:: Sinpl eOrder edl ndex- >new(date => "ASC")
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())

)

196 Joins

$tt ToUsd->initialize();

the positions in the original currency
our $ttPosition = Triceps:: Tabl eType->new $rt Positi on)
- >addSubl ndex("pri mary",
Tri ceps:: | ndexType- >newHashed(key => ["date", "custoner", "synbol"])

- >addSubl ndex("currencyLookup", # for joining with currency conversion
Triceps:: | ndexType- >newHashed(key => ["date", "currency"])
- >addSubl ndex(" groupi ng", Triceps::I|ndexType->newFifo())

)
- >addSubl ndex("byDate", # for cleaning by date
Triceps:: Sinpl eOrder edl ndex- >new(date => "ASC")
- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())

)
$ttPosition->initialize();
our $uJoin = Triceps::Unit->new"udoin");

our $tToUsd = $uJoi n->nmakeTabl e($tt ToUsd, "t ToUsd");
our $tPosition = $udoi n->makeTabl e($ttPosition, "tPosition");

our $join = Triceps::Joi nTwo- >new(
name => "join",
| eft Tabl e => $t Position,
ri ght Tabl e => $t ToUsd,
byLeft => ["date", "currency"],
type => "inner",
); # would confess by itself on an error

label to print the changes to the detailed stats
nmakePri nt Label ("I bPrint", $join->get QutputLabel ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "cur") {

$uJoi n- >makeArrayCal | ($t ToUsd- >get | nput Label (), @ata);
} elsif ($type eq "pos") {

$uJoi n- >makeArrayCal | ($t Posi ti on->get | nput Label (), @lata);
}

$udoi n->drai nFrane(); # just in case, for conpleteness

}

The example just does the joining, leaving the aggregation to the imagination of the reader. The result of a JoinTwo is not
stored in atable. It is a stream of ephemeral updates, same as for LookupJoin. If you want to keep them, you can put them
into atable yourself (and maybe do the aggregation in the same table).

Both of the joined tables must provide a Hashed index for the efficient joining. In this case it will be “currencyL ookup’
on theleft and “primary” on theright, found automatically by the key fields. The index may be leaf (selecting one row per
key) or non-leaf (containing multiple rows per key) but it must be there. This makes sure that the joins are always efficient
and you don't have to hunt for why your model is suddenly so slow.

There are two ways to provide the join condition: either specify it explicitly in the option “by” or “byLeft”, or specify the
indexes in both tables and have the key fields in them paired together. Or you can specify both, as long as the information
stays consistent. For example, the join in this example could also be written as:

our $join = Triceps::Joi nTwo- >new(
name => "join",

JoinTwo joins two tables 197

| eft Tabl e => $t Position,
leftldxPath => ["currencyLookup"],
ri ght Tabl e => $t ToUsd,
rightldxPath => ["primry"],
type => "inner",
); # would confess by itself on an error

When the key fields in the indexes are paired up together, it's done in the order they go in the index specifications. Once
again, thefields are paired not by name but by order. If the indexes are nested, the outer indexes precede in the order. For
example, the $t t ToUsd could have the same index done in a nested way and it would work just as well:

- >addSubl ndex(" byDat e",
Triceps:: | ndexType- >newHashed(key => ["date"])
- >addSubl ndex("pri mary",
Triceps:: | ndexType- >newHashed(key => ["currency"])
)
)

Same as with LookupJoin, currently only the Hashed indexes are supported, and must go through all the path. The outer
index “byDate” here can not be a Sorted/Ordered index, that would be an error and the join will refuse to accept it.

If the order of key fieldsinthe $t t ToUsd index were changed to be different from $t t Posi ti on, like this

- >addSubl ndex (" pri mary",
Triceps:: I ndexType->newHashed(key => ["currency", "date"])

)

then it would be a mess for the automatic pairing by index. The wrong fields would be matched up in the join con-
dition, which would become (t Posi ti on.date == tToUsd.currency && tPosition.currency ==
t ToUsd. dat e) , and everything would go horribly wrong. It would be no problem at all for selecting the pairing explic-
itly with the “by” options and |etting the join find the index, which is the recommended way.

JoinTwo is much less lenient than LookupJoin as the key field types go. It requires the types of the matching fields to be
exactly the same. Partialy, for the reasons of catching the wrong field pairing by order, partially for the sake of the result
consistency. JoinTwo does the look-upsin both directions. And think about what happensif astring field and anint32 field
get matched up, and then the non-numeric strings turn up in the string field, containing things like “abc” and “qwerty”.
Those strings on the left side will match the rows with numeric 0 on the right side. But then if the row with 0 on the right
side changes, it would look for the string “0” on the left, which would not find either “abc” or “qwerty”. The state of the
join will become amess. So no automatic key type conversions here.

By the way, even though JoinTwo doesn't refuse to have the float64 key fields, using them isabad idea. The floating-point
values are subject to non-obvious rounding. And if you have two floating-point valuesthat print the same, this doesn't mean
that they are internally the same down to the last bit (because the printing involves the conversion to decimal that involves
rounding). The joining requires that the values are exactly equal. Because of thisthe joining on afloating-point field isrife
with unpleasant surprises. Better don't do it. A possible solution isto round values by converting them to integers (scaled
by multiplying by a fixed factor to get essentially afixed-point value). Y ou can even convert them back from fixed-point
to floating-point and still join on these floating-point values, because the same values would always be produced from
integers in exactly the same way, and will be exactly the same.

More of the JoinTwo options closely parallel those in LookupJoin. Obviously, “name’, “rightTable” and “rightldxPath”
arethe same, with the added symmetrical “leftTable” and “leftldxPath”. Thereisno “unit” option though, the unitisalways
taken from the tables (which must belong to the same unit). The option to save the source code of the generated joiner
code has been split in two: “leftSaveJoinerTo” and “rightSaveJoinerTo”. Since JoinTwo has to react to the updates from
both sides, is has to have two handlers. And since internally it uses two LookupJoin for this purpose, these happen to be
the joiner functions of the left and right LookupJoin.

The option “type” selects the join mode. The inner join is the default, and would have been used even if this option was
not specified.

198 Joins

The options controlling the result are also the same as in LookupJoin: “leftFields’, “rightFields’, “fieldsLeftFirst”. There
is no option “fieldsDropRightKey”, JoinTwo always excludes the duplicate key fields automatically. The results in this
example include all the fields from both sides by default.

Thejoinsarecurrently not equipped to actually compute thetranslated pricesdirectly. They can only look up theinformation
for it, and the computation can be done later, before or during the aggregation.

That's enough explanations for now, let'slook at the result. The input rows are shown as usual in bold, and to make keeping
track easier, | broke up the output into short snippets with commentary after each one.

cur, OP_I NSERT, 20120310, USD, 1
cur, OP_I NSERT, 20120310, GBP, 2
cur, OP_I NSERT, 20120310, EUR, 1. 5

Inserting the reference currencies produces no result, since it's an inner join and they have no matching positions yet.

pos, OP_| NSERT, 20120310, one, AAA, 100, 15, USD
join.leftLookup. out OP_I NSERT dat e="20120310" cust omer="one"
synbol =" AAA" quantity="100" price="15" currency="USD"' toUsd="1"
pos, OP_I NSERT, 20120310, t wo, AAA, 100, 8, GBP
join.leftLookup. out OP_I NSERT dat e="20120310" customer="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

Now the positions arrive and find the matching translationsto USD. The label names on the output are an interesting artifact
of all the chained labels receiving the original rowop that refers to the first label in the chain. Which happens to be the
output label of a LookupJoin inside JoinTwo. It works conveniently for the demonstrational purposes, since the name of
that LookupJoin shows whether the row that triggered the result came from the left or right side of the JoinTwo.

pos, OP_I NSERT, 20120310, t hr ee, AAA, 100, 300, RUR

This position is out of luck: no tranglation for its currency. Theinner join isactually not agood choice here. If arow does
not pass through because of the lack of trandation, it gets excluded even from the aggregations that do not require the
trang ation, such as those that total up the quantity of a particular symbol across all the customers. A left outer join would
have been suited better.

pos, OP_I NSERT, 20120310, t hr ee, BBB, 200, 80, GBP
join.leftLookup. out OP_I NSERT dat e="20120310" custoner="three"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

Another position arrives, same as before.

cur, OP_I NSERT, 20120310, RUR, 0. 04

join.rightLookup. out OP_I NSERT dat e="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"

The trandlation for RUR finally comesin. The position in RUR can now find its match and propagate through.

cur, OP_DELETE, 20120310, GBP, 2
join.rightlLookup. out OP_DELETE date="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"
join.rightLookup. out OP_DELETE dat e="20120310" custoner="three"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"
cur, OP_I NSERT, 20120310, GBP, 2. 2
join.rightLookup.out OP_I NSERT date="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2.2"
join.rightLookup. out OP_I NSERT dat e="20120310" custoner="three"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"

An exchange rate update for GBP arrives. It amounts to “delete the old translation and then insert a new one”. Each of
these operations updates the state of the join: the disappearing translation causes all the GBP positions to be deleted from

JoinTwo joins two tables 199

the result, and the new trandation inserts them back, with the new value of toUsd. Which is the correct behavior: to make
an up date to the result positions, they have to be deleted and then inserted witn the new values.

pos, OP_DELETE, 20120310, one, AAA, 100, 15, USD
join.leftLookup. out OP_DELETE dat e="20120310" cust omer="one"
synbol =" AAA" quantity="100" price="15" currency="USD"' toUsd="1"
pos, OP_| NSERT, 20120310, one, AAA, 200, 16, USD
join.leftLookup. out OP_I NSERT dat e="20120310" cust omer="one"
synbol =" AAA" quantity="200" price="16" currency="USD"' toUsd="1"

A position update arrives. Again, it's a del ete-and-insert, and propagates through the join as such.

That's the end of the first example. The commentary said that the left outer join would have been better for the logic, so
let's make one for the left outer join. All we need to change is the join type option:

our $join = Triceps::Joi nTwo- >new(
name => "join",
| ef t Tabl e => $t Posi ti on,
ri ght Tabl e => $t ToUsd,
byLeft => ["date", "currency"],
type => "left",
); # would confess by itself on an error

Now the positions would pass through even if the currency trandation is not available. The same input now produces a
different result:

cur, OP_I NSERT, 20120310, USD, 1
cur, OP_I NSERT, 20120310, GBP, 2
cur, OP_I NSERT, 20120310, EUR 1.5
pos, OP_| NSERT, 20120310, one, AAA, 100, 15, USD
join.leftLookup. out OP_I NSERT dat e="20120310" cust omer="one"
synmbol =" AAA" quantity="100" price="15" currency="USD" toUsd="1"
pos, OP_I NSERT, 20120310, t wo, AAA, 100, 8, GBP
join.leftLookup. out OP_I NSERT dat e="20120310" customer="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

So far things are going the same as for the inner join.

pos, OP_| NSERT, 20120310, t hr ee, AAA, 100, 300, RUR
join.leftLookup.out OP_I NSERT date="20120310" custoner="three"
synbol =" AAA" quantity="100" price="300" currency="RUR'

Thefirst difference: even though there is no trandation for RUR, the row still passes through (with thefieldt oUsd being
NULL).

pos, OP_| NSERT, 20120310, t hr ee, BBB, 200, 80, GBP
join.leftLookup.out OP_I NSERT dat e="20120310" customner="t hree"
synbol =" BBB" quantity="200" price="80" currency="GBP" toUsd="2"

Thisis aso unchanged.

cur, OP_I NSERT, 20120310, RUR, 0. 04

join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'

join.rightLookup. out OP_| NSERT dat e="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"

The second difference: since this row from the left side has already passed through, just sending another INSERT for it
would make the datainconsistent. The original result without the translation must be deleted first, and then anew one, with
trandation, inserted. JoinTwo is smart enough to figure it out all by itself.

200 Joins

cur, OP_DELETE, 20120310, GBP, 2

join.rightLookup. out OP_DELETE dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

join.rightLookup. out OP_I NSERT dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP"

join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

join.rightLookup. out OP_I NSERT dat e="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP"

The same logic works for the deletes, only backwards: when the translation for GBP is deleted, the result rows that used
it change to the lose the trand ation.

cur, OP_I NSERT, 20120310, GBP, 2. 2
join.rightLookup. out OP_DELETE dat e="20120310" custoner ="t wo"
synmbol =" AAA" quantity="100" price="8" currency="GBP"
join.rightLookup.out OP_I NSERT date="20120310" custoner ="t wo"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2.2"
join.rightLookup. out OP_DELETE dat e="20120310" custoner="three"
synbol ="BBB" quantity="200" price="80" currency="G3P"
join.rightLookup. out OP_I NSERT dat e="20120310" custoner="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"

And again, when the new trandation for GBP comesin, the DELETE-INSERT sequence is done for each of the rows. As
you can see, the update of the GBP translation in the last two snippets worked in not the most efficient way. Fundamentally,
if we knew that aDELETE of GBP will beimmediately followed by an INSERT, we could skip inserting and then deleting
therowswith the NULL int oUsd. But we don't know, and in Triceps there is no way to know it.

If you readlly, really want to avoid the propagation of these intermediate changes, insert after the join a Collapse template
described in Section 14.2; “Collapsed updates’ (p. 237), and flush it only after the whole update has been processed.
Therewill be more overhead in the Collapseitself, but al thelogic below it will skip the intermediate changes. If thislogic
below is heavy-weight, that might be an overall win. A caveat though: a Collapse requires that the data has a primary key,
a JoinTwo doesn't require its result (nor its inputs) to have a primary key. Because of this, the collapse might not work
right with every possible join, you'd have to limit yourself to the joins that produce the data with a primary key.

pos, OP_DELETE, 20120310, one, AAA, 100, 15, USD
join.leftLookup. out OP_DELETE date="20120310" custoner="one"
synbol =" AAA" quantity="100" price="15" currency="USD' toUsd="1"
pos, OP_I NSERT, 20120310, one, AAA, 200, 16, USD
join.leftLookup. out OP_I NSERT date="20120310" cust oner="one"
synbol =" AAA" quantity="200" price="16" currency="USD' toUsd="1"

And the rest is again the same as with an inner join.

JoinTwo can do aright outer join too, just use the type “right”. It works in exactly the same way as the left outer join, just
with a different table. So much the same that it's not even worth a separate example.

Now, the full outer join. The full outer joins usually get used with a variation of the “fork-join” topology described in
the Section 14.1: “The dreaded diamond” (p. 233). In it the processing of a row can be forked into multiple parallel
paths, each path doing an optional part of the comuptation and either providing aresult row or not, eventually with all the
parts merged back together into one row. The full outer join is a convenient way to do this merge: the paths that didn't
produce the result get quietly ignored, and the results that were produced get merged back into a single row. The row in
such situations is usually identified by a primary key, so the partial results can find each other. This scheme makes the
most sense when the paths are executed in the parallel threads, or when the processing on some paths may get delayed and
then continued later. If the processing is single-threaded and fast, Triceps provides a more convenient procedura way of
getting the same result: just call every path in order and merge the results from them procedurally, and you won't have to
keep the intermediate resultsin their tables forever, nor delete them manually.

Even though that use istypical, it has only the 1:1 record matching and does not highlight all the abilities of the JoinTwo.
So, |et's come up with another example that does.

JoinTwo joins two tables 201

The positions-and-currencies do not lend itself easily to afull outer join but we'll make them do. Suppose that you want to
get the total count of positions (per symbol, or altogether), or maybe the total value, for every currency. Including those for
which we have the exchange rates but no positions, for them the count should simply be 0 (or maybe NULL). And thosefor
which there are positions but no exchange rate trandlations. Thisis ajob for afull outer join, followed by an aggregation.
Thejoin has the type “outer” and looks like this:

our $join = Triceps::Joi nTwo- >new(
name => "join",
| eft Tabl e => $t Position,
ri ght Tabl e => $t ToUsd,
byLeft => ["date", "currency"],
type => "outer",
); # would confess by itself on an error

As before, the aggregation part will be left to the imagination of the reader. This join has the many-to-one (M:1) row
matching, since there might be multiple positions on the left matching one currency rate translation on the right. Thiswill
create interesting effectsin the output, let's look at it:

cur, OP_I NSERT, 20120310, GBP, 2
join.rightLookup.out OP_I NSERT dat e="20120310" currency="G3P"
t oUsd="2"

Thefirst trand ation gets through, even though there is no position for it yet.

pos, OP_I NSERT, 20120310, t wo, AAA, 100, 8, GBP
join.leftLookup. out OP_DELETE dat e="20120310" currency="GBP" toUsd="2"
join.leftLookup. out OP_I NSERT date="20120310" custoner="two"

synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

Thefirst position for an existing translation comes in. Now the GBP row has a match, so the unmatched row gets del eted
and amatched one gets inserted instead.

pos, OP_| NSERT, 20120310, t hr ee, BBB, 200, 80, GBP
join.leftLookup. out OP_I NSERT dat e="20120310" custoner="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

The second position for GBP works differently: since there is no unmatched row any more (it was taken care of by thefirst
position), there is nothing to delete. Just the second matched row gets inserted.

pos, OP_I NSERT, 20120310, t hr ee, AAA, 100, 300, RUR
join.leftLookup.out OP_I NSERT dat e="20120310" customner="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'

The position without a matching currency get through as well.

cur, OP_I NSERT, 20120310, RUR, 0. 04

join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR"

join.rightLookup. out OP_I NSERT dat e="20120310" customer="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR"
t oUsd="0. 04"

Now the RUR translation becomes available and it has to do the same things as we've seen before, only on the other side:
delete the unmatched record and replace it with the matched one.

cur, OP_DELETE, 20120310, GBP, 2

join.rightLookup. out OP_DELETE dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2"

join.rightLookup. out OP_I NSERT dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP"

join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2"

202 Joins

join.rightLookup. out OP_| NSERT dat e="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP"

cur, OP_I NSERT, 20120310, GBP, 2. 2

join.rightLookup. out OP_DELETE dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP"

join.rightLookup. out OP_I NSERT dat e="20120310" custoner="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2.2"

join.rightLookup. out OP_DELETE date="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP"

join.rightLookup. out OP_I NSERT dat e="20120310" customer="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"

Then the GBP trandation gets updated. First the old translation gets deleted and then the new one inserted. When the
trandlation gets deleted, all the positions in GBP |ose their match. So the matched rows gets deleted and replaced with the
unmatched ones. When the new GBP trandlation is inserted, the replacement goes in the other direction.

pos, OP_DELETE, 20120310, t hr ee, BBB, 200, 80, GBP
join.leftLookup. out OP_DELETE date="20120310" custoner="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"

When this position goes away, the row gets deleted from the result as well. However it was not the only position in GBP,
so there is no need to insert an unmatched record for GBP.

pos, OP_DELETE, 20120310, t hr ee, AAA, 100, 300, RUR

join.leftLookup. out OP_DELETE date="20120310" custoner="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"

join.leftLookup. out OP_I NSERT date="20120310" currency="RUR"
t oUsd="0. 04"

This position was the last one in RUR. So when it gets deleted, the RUR translation has no match any more. That means,
after deleting the matched row from the results, the unmatched row has to be inserted to keep the balance right.

This business with keeping track of the unmatched rowsis not unique to the full outer joins. Remember, it was showing in
the left outer joins too, and the right outer joins are no exception either. When the first matching row gets inserted or the
last matching row gets deleted on the side that is opposite to the "outer side”, the unmatched rows have to be handled in
the result. (That would be the right side for the left outer joins, the left side for the right outer joins, and either side for the
full outer joins). The special thing about the M:1 (and 1:M and M:M) joins is that there may be more than one matching
row. On insertion, the second and following matching rows produce a different effect than the first one. On deletion, the
opposite: al the rows but the last work differently from the last one. It's not limited to the full outer joins. M:1 or M:M
with aright outer join, and 1:M or M:M with aleft outer join will do it too.

If you're like me, by now you'd be wondering, how does it work? If the “opposite side” isof “one” variety (:1 or 1.), which
can be known from it using aleaf index for the join, then every insert isthe first insert of amatching row for this key, and
every deleteisthe delete of the last row for this key. Which means, do the empty-match business every time.

If the “opposite side” is of the “many” variety (:M or M:), with a non-leaf index, then things get more complicated. The
joinworks by processing the rowops coming out of the argument tables. When it gets the rowop in such asituation, it goes
to the table and checks, was it the first (or last) row for this key? And then uses this knowledge to act.

12.9. The key field duplication in JoinTwo

JoinTwo in its raw form has the same problem of the key field duplication as L ookupJoin (described in Section 12.6: “The
key fields of LookupJdoin” (p. 190)). It's a more high-level template, so it solves this problem automatically, removing
the duplicate fields from the result by default.

But the problem in JoinTwo is even worse because the table-to-table outer joins must work with the updates from any side.
If arow finds no match in the outer join, the other side and all the fields in that other side will be NULL. If only the fields

The key field duplication in JoinTwo 203

from that other side pass through into the result, the result will contain NULLs in the key fields, which would be very
wrong. Thus JoinTwo has even more magic built into it: it knows how to have the key fields copied into the result from
whatever side happens to be present for a particular row, and does this by default. The other way to think about it is that
it makes these fields always available on both sides.

The default behavior is good enough for most situations. But if you want more control, it's done with the option “field-
sUnigKey”. The default value of this option is “first”. It means: Enable the magic for copying the fields from the non-
NULL side to the NULL side. Look at the option “fieldsLeftFirst” and figure out, which side goes first in the result. Let
the key fields pass on that side unchanged (though the user can block them on that side manually too, or possibly rename
them, it's his choice). On the other side, automatically generate the blocking specs for the key fields and prepend them to
that side's result specification. It's smart enough to know that an undefined “leftFields’ or “rightFields’ means the same as
“*» s0 an undefined result spec is replaced by the blocking specs followed by “.*”. If you later call the methods

$f spec
$f spec

= $join->getLeftFields();
= $joi n->get Ri ghtFi el ds();

then you will actually get back the modified field specs.

If youwant the key fieldsto be present in adifferent location in the result, you can set “fieldsUnigKey” to “left” or “right”.
That will make them pass through on the selected side, and the blocking would be automatically added on the other side.

For more control yet, set this option to “manual”. The magic for making the key fields available on both sides will still be
enabled, but no automatic blocking. You can pick and choose the result fields manually, exactly as you want. Remember
though that there can't be multiple fields with the same name in the result, so if both sides have these fields named the
same, you've got to block or rename one of the two copies.

Thefinal choiceis“none’: it simply disables the key field magic.

12.10. The override options in JoinTwo

Normally JoinTwo tries to work in a consistent manner, refusing to do the unsafe things that might corrupt the data. But if
you readlly, really want, and are really sure of what you're doing, there are options to override these restrictions.

If you set

overrideSi npl eM nded => 1,

then the logic that producesthe DELETE-INSERT sequences for the outer joins gets disabled. The only reason | can think
of to usethisoptionisif you want to simulate a CEP system that has no concept of opcodes. So if your datais INSERT-only
and you want to produce the INSERT-only data too, and want the dumbed-down logic, this option is your solution.

The option
overri deKeyTypes => 1,

disablesthe check for the exact match of the key field types. This might come helpful for exampleif you have anint32field
on one side and an int64 field on the other side, and you know that in reality they would aways stay within the int32 range.
Or if you have an integer on one side and a string that always contains an integer on the other side. Since you know that the
type conversions can always be done with no loss, you can safely override the type check and still get the correct result.

12.11. JoinTwo input event filtering

Let'slook at how the businessday logic interactswith thejoins. It'stypical for the business applicationsto keep the full data
for the current day, or afew recent days, then clear the data that became old and maybe keep it only in an aggregated form.

204 Joins

So, let's add the business day logic to theleft join example. It usestheindexes by dateto find the rowsthat have becomeold:

exchange rates, to convert all currencies to USD
our $ttToUsd = Triceps:: Tabl eType- >new $rt ToUsd)
- >addSubl ndex (" pri mary",
Triceps:: I ndexType->newHashed(key => ["date", "currency"])
)
- >addSubl ndex("byDate", # for cleaning by date
Tri ceps:: Si npl eOr der edl ndex- >new(date => "ASC")
- >addSubl ndex(" groupi ng", Triceps::IndexType->newrifo())

)
$ttToUsd->initialize();

the positions in the original currency
our $ttPosition = Triceps:: Tabl eType->new $rt Position)
- >addSubl ndex (" pri mary",
Triceps:: I ndexType->newHashed(key => ["date", "custoner", "synbol"])
)
- >addSubl ndex(" currencyLookup”, # for joining with currency conversion
Triceps:: I ndexType->newHashed(key => ["date", "currency"])
- >addSubl ndex(" groupi ng", Triceps::IndexType->newrifo())
)
- >addSubl ndex("byDate", # for cleaning by date
Tri ceps:: Si npl eOr der edl ndex- >new(date => "ASC")
- >addSubl ndex("groupi ng", Triceps::I|ndexType->newFifo())

)
$ttPosition->initialize();

remenber the indexes for the future use
our $i xtToUsdByDate = $tt ToUsd->fi ndSubl ndex("byDate");
our $ixtPositionByDate = $ttPosition->findSubl ndex("byDate");

Go through the table and clear all the rows where the field "date"
is less than the date argunment. The index type orders the table by date.
sub cl earByDate($$$) # ($table, $ixt, $date)

{
ny ($table, $ixt, $date) = @;
ny $next;
for (my $rhit = $tabl e->beginldx($ixt); !'$rhit->isNull(); $rhit = $next) {
last if (($rhit->getRow()->get("date")) >= $date);
$next = $rhit->next!ldx($ixt); # advance before renoval
$t abl e- >renove($rhit);
}
}

The table types are the same as have been already shown before, they've been copied here for convenience. cl ear By-
Dat e() isanuniversa function that can clear the contents of any table by date, provided that the dateisin the field “ date”
and the index type on this table that orders the rows by dateis given as an argument. The index with ordering by date must
be not just a leaf Ordered index, but have a FIFO index nested in it. Without that FIFO index, the Ordered index would
allow only one row for each date.

The main loop gets extended with afew more commands:
our $busi nessDay = undef;
our $join = Triceps::Joi nTwo- >new(

name => "join",
| eft Tabl e => $t Position,

JoinTwo input event filtering 205

ri ght Tabl e => $t ToUsd,
byLeft => ["date", "currency"],
type => "left",

); # would confess by itself on an error

label to print the changes to the detailed stats
nakePrint Label ("I bPrint", $join->get QutputLabel ());

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "cur") {
$uJoi n- >makeArrayCal | ($t ToUsd- >get | nput Label (), @ata);
} elsif ($type eq "pos") {
$uJoi n- >makeArrayCal | ($t Posi ti on->get | nput Label (), @lata);
} elsif ($type eq "day") { # set the business day
$busi nessDay = $data[0] + O; # convert to an int
} elsif ($type eq "clear") { # clear the previous day
flush the left side first, because it's an outer join
&cl ear ByDat e($t Posi ti on, $i xt PositionByDate, $businessbDay);
&cl ear ByDat e($t ToUsd, $i xt ToUsdByDat e, $busi nessDay);
}

$udoi n->drai nFrane(); # just in case, for conpleteness

}
Theroll-over to the next business day (after the input data previously shown with the left join example) then lookslike this:

day, 20120311
cl ear
join.leftLookup. out OP_DELETE date="20120310" customer="two"
synbol =" AAA" quantity="100" price="8" currency="GBP" toUsd="2.2"
join.leftLookup. out OP_DELETE date="20120310" customner="t hree"
synbol =" AAA" quantity="100" price="300" currency="RUR'
t oUsd="0. 04"
join.leftLookup. out OP_DELETE date="20120310" customner="t hree"
synbol ="BBB" quantity="200" price="80" currency="GBP" toUsd="2.2"
join.leftLookup. out OP_DELETE date="20120310" cust omer="one"
synmbol =" AAA" quantity="200" price="16" currency="USD" toUsd="1"

Clearing the | eft-side table before the right-side one is more efficient than the other way around, sincethisisaleft outer join,
and sinceit'san M:1 join. If the right-side table were cleared first, it would first update all the result records to change all
theright-side fieldsin them to NULL, and then the clearing of the left-side table would finally delete these rows. Clearing
the left side first removes this churn: it deletes all the rows from the result right away, and then when the right side is
cleared, it still triesto look up the matching rows but finds nothing and produces no result. For an inner join the order would
not matter: either one would produce the same amount of churn. For afull outer join, the M:1 consideration would come
into play, and removing the rows from the left side first would still be more efficient. This way when it removes multiple
position rowsthat match the same currency, all of them but one generate the smple DELETES, and only the last onewould
follow up with an INSERT that has only the right-side data in it. That row with the right-side data will get deleted when
the currency row gets deleted from the right side. If the right side were deleted first, deleting each row on the right side
would cause an output of a DELETE-INSERT result pair for each of its matching position rows from the left side, and
would produce more churn. For the 1:1 or M:M full outer joins, the order would not matter.

If you don't want these deletions to propagate though the rest of your model, you can just put a filtering logic after the
join, to throw away all the modifications for the previous days. Through don't forget that you would have then to delete
the previous-day data from the rest of the model's tables manually.

If you want to keep only the aggregated data, you may want to pass the join output to the aggregator without filtering and
then filter the aggregator's output, thus stopping the updates to the aggregation results. Y ou may even have a specia logic
in the aggregator, that would ignore the groups of the previous days. Such optimization of the aggregation filtering will

206 Joins

be shown in the Section 13.1: “Time-limited propagation” (p. 221). And they aren't any less efficient than filtering on
the output of the join, because if you filter after the join, you'd still have to remove the rows from the aggregation table,
and would still have to filter after the aggregation too.

Now, suppose that you want to be extra optimal and don't want any join look-ups to happen at all when you delete the old
data. JoinTwo has a feature that lets you do that. Y ou can make it receive the events not directly from the tables but after
filtering, using the options “leftFromLabel” and “rightFromLabel”:

our $l bPositionCurrent = $uJoi n- >nakeDumyLabel (
$t Posi ti on->get RowType, "Il bPositionCurrent");
our $l bPositionFilter = $uJoi n->makelLabel ($t Posi ti on- >get RowType,
"I bPositionFilter", undef, sub {
if ($_[1]->get Rowm)->get("date") >= $busi nessDay) {
$uJoi n->cal | ($l bPosi ti onCurrent->adopt ($_[1]));
}

1)
$t Posi ti on->get Qut put Label () - >chai n($l bPositionFilter);

our $l bToUsdCurrent = $udoi n- >makeDummyLabel (
$t ToUsd- >get RowType, "l bToUsdCurrent");
our $l bToUsdFilter = $uJoi n->makelLabel ($t ToUsd- >get RowType,
"I bToUsdFil ter", undef, sub {
if ($_[1]->get Rowm)->get("date") >= $busi nessDay) {
$uJoi n->cal | ($l bToUsdCurrent ->adopt ($_[1]));
}

1)
$t ToUsd- >get Qut put Label ()->chai n($l bToUsdFilter);

our $join = Triceps::Joi nTwo- >new(
nane => "join",
| eft Tabl e => $t Position,
| ef t FromLabel => $I bPositionCurrent,
ri ght Tabl e => $t ToUsd,
ri ght FronLabel => $l bToUsdCurrent,
byLeft => ["date", "currency"],
type => "left",
); # would confess by itself on an error

The same clearing now looks like this:

day, 20120311
cl ear

No output is coming from thejoin whatsoever. It all gets cut off beforeit reaches the join. It's not such agreat gain though.
Remember that if you want to keep the aggregated data, you would still have to delete the original rows manually from the
aggregation table afterwards. And the filtering logic will add overhead, not only during the clearing but al the time.

If you're not careful with the filtering conditions, it's also easy to make the results of the join inconsistent. This example
filters both input tables on the same key field, with the same condition, so the output will stay always consistent. But if
any of these elements were missing, it becomes possible to produce inconsistent output that has the DELETES of different
rows than INSERTS, and deletions of the rows that haven't been inserted in the first place. The reason is that even though
the input events are filtered, the table look-ups done by JoinTwo aren't. If some row comes from the right side and gets
thrown away by the filter, and then another row comes on the left side, passes the filter, and then finds a match in that
thrown-away right-side row, it will use that row in the result. And the join would think that the right-side row has already
been seen, and would produce an incorrect update.

So these options don't make a whole lot of a win but make a major opportunity for a mess, and probably should never
be used. And will probably be deleted in the future, unless someone finds a good use for them. They have been added
because at the time they provided a roundabout way to do a self-join. But the later fixes to the Table logic make the self-
joins possible without this kind of perversions.

JoinTwo input event filtering 207

12.12. Self-join done with JoinTwo

The self-joins happen when atable is joined to itself. For an example of a model with self-joins, let's look at the Forex
trading. People exchange the currencies in every possible direction in multiple markets. The Forex exchange rates are
quoted for every pair of currencies, in every direction.

Naturally, if you exchange one currency into another and then back into thefirst one, you normally end up with less money
than you've started with. The rest becomes the transaction cost and lines the pockets of the brokers, market makers and
exchanges.

However once in a while some interesting things happen. If the exchange rates between the different currencies become
dishalanced, you may be able to exchange the currency A for currency B for currency C and back for currency A, and
end up with more money than you've started with. (Y ou don't have to do it in sequence, you would normally do al three
transactions in parallel). However it's a short-lived opportunity: as you perform the transactions, you'll be changing the
involved exchange rates towards the balance, and you won't be the only one exploiting this opportunity, so you better act
fast. Thisactivity of bringing the market into balance while simultaneously extracting profit is called “arbitration”.

So let's make amodel that will detect such arbitration opportunities, for the following automated execution. Mind you, it's
al grossly ssimplified, but it shows the gist of it. And most importantly, it uses the self-joins. Here we go:

our $rtRate = Triceps:: RowType->new(# an exchange rate between two currencies
ccyl => "string", # currency code
ccy2 => "string", # currency code
rate => "float64", # multiplier when exchanging ccyl to ccy2

)

all exchange rates
our $ttRate = Triceps:: Tabl eType- >new($rt Rat e)
- >addSubl ndex(" byCcy1",
Triceps:: I ndexType->newHashed(key => ["ccyl" 1)
- >addSubl ndex("byCcy12",
Triceps:: I ndexType->newHashed(key => ["ccy2" 1)
)

)
- >addSubl ndex (" byCcy2",

Triceps:: I ndexType->newHashed(key => ["ccy2" 1)

- >addSubl ndex("groupi ng", Triceps::I|ndexType->newrifo())
)

$ttRate->initialize();
our $uArb = Triceps::Unit->new "uArb");
our $tRate = $uArb->nmakeTabl e($ttRate, "tRate");

our $joinl = Triceps::Joi nTwo- >new(
name => "joi nl",
| eft Tabl e => $tRate,
leftldxPath => ["byCcy2"],
leftFields => ["ccyl", "ccy2", "ratel/ratel"],
ri ght Table => $tRate,
rightldxPath => ["byCcyl" 1],
rightFields => ["ccy2/ccy3", "rate/rate2"],
); # would die by itself on an error
our $ttJoinl = Triceps:: Tabl eType- >new $j oi n1- >get Resul t RowType())
- >addSubl ndex(" byCcy123",
Triceps:: | ndexType- >newHashed(key => ["ccyl", "ccy2", "ccy3"])

)
- >addSubl ndex("byCcy31",
Triceps:: I ndexType->newHashed(key => ["ccy3", "ccyl" 1)

208 Joins

- >addSubl ndex(" groupi ng", Triceps::|ndexType->newFifo())
)

$ttJoinl->initialize();
our $tJoi nl = $uArb->nakeTabl e($ttJoinl, "tJoinl");
$j oi nl- >get Qut put Label () - >chai n($t Joi n1- >get | nput Label ());

our $join2 = Triceps::Joi nTwo- >new(
name => "joi n2",
| eft Tabl e => $tJoinl,
leftldxPath => ["byCcy31"],
ri ght Table => $tRate,
rightldxPath => ["byCcyl", "byCcyl2"],
rightFields => ["rate/rate3"],
the field ordering in the indexes is already right, but
for clarity add an explicit join condition too
byLeft => ["ccy3/ccyl", "ccyl/ccy2"],

); # would die by itself on an error

now conpute the resulting circular rate and filter the profitable | oops
our $rtResult = Triceps:: RowType- >new

$j oi n2- >get Resul t RowType() - >get def (),

| ooprate => "fl oat 64",

~

ny $l bResult = $uArb->makeDumryLabel ($rt Result, "l bResult");

ny $l bConput e = $uArb->makelabel ($j oi n2- >get Resul t RowType(), "I bConpute", undef, sub {
ny ($label, $rowop) = @;
ny $row = $rowop->get Row() ;
ny $looprate = $row >get("ratel”) * $row >get("rate2") * $row >get("rate3");

if ($looprate > 1) {
$uAr b- >makeHashCal | ($l bResul t, $rowop->get Opcode(),
$r ow >t oHash(),
| ooprate => $l ooprate,
)
} else {
print("__", $rowop->printP(), "looprate=$looprate \n"); # for debuggi ng
}

1)
$j 0i n2- >get Qut put Label () - >chai n($l bConput e) ;

label to print the changes to the detailed stats
makePri nt Label ("I bPrint", $l bResult);

#makePri nt Label ("I bPri ntJoi n1", $j oi nl->get Qut put Label ());
#makePri nt Label ("1 bPri ntJoi n2", $j oi n2- >get Qut put Label ())

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "rate") {
$UAr b- >makeAr rayCal | ($t Rat e- >get | nput Label (), @lata);

}

$UAr b->drai nFrame(); # just in case, for conpleteness

}

The rate quotes will be coming into $t Rat e. The indexes are provided to both work with the self-joins and to have a
primary index asthefirst leaf.

Thereareno special optionsfor the self-join in JoinTwo: just use the sametable for both theleft and right side. Thefirst join
represents two exchange transactions, so it's done by matching the second currency of the first quote to the first currency

Self-join done with JoinTwo 209

of the second quote. The result contains three currency names and two rate multipliers. The second join adds one more rate
multiplier, returning back to the first currency. Now to learn the effect of the circular conversion we only need to multiply
all the multipliers. If it comes out below 1, the cycling transaction would return aloss, if above 1, a profit.

The label $I bConput e with Perl handler performs the multiplication, and if the result is over 1, passes the result to the
next label $I bResul t, from which then the data gets printed. I've also added a debugging printout in case if the row
doesn't get through. That one startswith“__ " and helps seeing what goes on inside when no result is coming out.

Finally, the main loop reads the data and putsiit into the rates table, thus driving the logic.

Now let's take alook at an example of arun, with interspersed commentary.

rat e, OP_I NSERT, EUR, USD, 1. 48
rat e, OP_I NSERT, USD, EUR, 0. 65
rat e, OP_I NSERT, GBP, USD, 1. 98
rat e, OP_| NSERT, USD, GBP, 0. 49

The rate quotes start coming in. Note that the rates are separate for each direction of exchange. So far nothing happens
because there aren't enough quotes to complete aloop of three steps.

rat e, OP_I NSERT, EUR, GBP, 0. 74

__join2.leftLookup.out OP_I NSERT ccyl="EUR' ccy2="GBP" ratel="0.74"
ccy3="USD' rate2="1.98" rate3="0.65" | ooprate=0.95238

__join2.1eftLookup. out OP_I NSERT ccyl="USD"' ccy2="EUR' ratel="0.65"
ccy3="GBP" rate2="0.74" rate3="1.98" | ooprate=0.95238

__join2.rightLookup. out OP_I NSERT ccyl="GBP" ccy2="USD' ratel="1.98"
ccy3="EUR' rate2="0.65" rate3="0.74" | ooprate=0.95238

rat e, OP_| NSERT, GBP, EUR, 1. 30

__join2.1eftLookup. out OP_I NSERT ccyl="GBP" ccy2="EUR' ratel="1.3"
ccy3="USD"' rate2="1.48" rate3="0.49" | ooprate=0.94276

__join2.1eftLookup. out OP_I NSERT ccyl="USD"' ccy2="GBP" ratel="0.49"
ccy3="EUR' rate2="1.3" rate3="1.48" |ooprate=0.94276

__join2.rightlLookup. out OP_I NSERT ccyl="EUR' ccy2="USD' ratel="1.48"
ccy3="GBP" rate2="0.49" rate3="1.3" | ooprate=0.94276

Now there are enough currencies in play to complete the loop. None of them get the loop rate over 1 though, so the only
printouts are from the debugging logic. There are only two loops, but each of them is printed three times. Why? It's aloop,
S0 you can start from each of its elements and come back to the same element. One row for each starting point. And the
joinsfind all of them.

To find and eliminate the duplicates, the order of currencies in the rows can be rotated to put the alphabetically lowest
currency code first. Note that they can't be just sorted because the relative order matters. Trading in the order GBP-USD-
EUR will give adifferent result than GBP-EUR-USD. The relative order has to be preserved. | didn't put any such elimi-
nation into the example to keep it smaller.

rat e, OP_DELETE, EUR, USD, 1. 48

__join2.1leftLookup.out OP_DELETE ccyl="EUR' ccy2="USD"' ratel="1.48"
ccy3="GBP" rate2="0.49" rate3="1.3" | ooprate=0.94276

__join2.leftLookup.out OP_DELETE ccyl="GBP" ccy2="EUR' ratel="1.3"
ccy3="USD"' rate2="1.48" rate3="0.49" | ooprate=0.94276

__join2.rightlLookup. out OP_DELETE ccyl="USD' ccy2="GBP" ratel="0.49"
ccy3="EUR' rate2="1.3" rate3="1.48" | ooprate=0.94276

rat e, OP_I NSERT, EUR, USD, 1. 28

__join2.leftLookup.out OP_I NSERT ccyl="EUR' ccy2="USD"' ratel="1.28"
ccy3="GBP" rate2="0.49" rate3="1.3" | ooprate=0.81536

__join2.1eftLookup. out OP_I NSERT ccyl="GBP" ccy2="EUR' ratel="1.3"
ccy3="USD"' rate2="1.28" rate3="0.49" | ooprate=0.81536

__join2.rightlLookup. out OP_I NSERT ccyl="USD' ccy2="GBP" ratel="0.49"
ccy3="EUR' rate2="1.3" rate3="1.28" | ooprate=0.81536

210 Joins

Someone starts changing lots of euros for dollars, and the rate moves. No good news for us yet though.

rat e, OP_DELETE, USD, EUR, 0. 65

__join2.1eftLookup. out OP_DELETE ccyl="USD"' ccy2="EUR' ratel="0.65"
ccy3="GBP" rate2="0.74" rate3="1.98" | ooprate=0.95238

__join2.leftLookup. out OP_DELETE ccyl="GBP" ccy2="USD' ratel="1.98"
ccy3="EUR' rate2="0.65" rate3="0.74" |ooprate=0.95238

__join2.rightLookup. out OP_DELETE ccyl="EUR' ccy2="GBP" ratel="0.74"
ccy3="USD' rate2="1.98" rate3="0.65" | ooprate=0.95238

rat e, OP_| NSERT, USD, EUR, 0. 78

| bResul't OP_I NSERT ccyl="USD' ccy2="EUR' ratel="0.78" ccy3="GBP"
rate2="0.74" rate3="1.98" |ooprate="1.142856"

| bResul't OP_I NSERT ccyl="GBP" ccy2="USD' ratel="1.98" ccy3="EUR'
rate2="0.78" rate3="0.74" |ooprate="1.142856"

| bResul't OP_I NSERT ccyl="EUR' ccy2="GBP" ratel="0.74" ccy3="USD"'
rate2="1.98" rate3="0.78" |ooprate="1.142856"

The rate for dollars-to-euros follows its opposite. This creates an arbitration opportunity! Step two: trade in the direction
USD-EUR-GBP-USD, step three: PROFIT!!!

rate, OP_DELETE, EUR, GBP, 0. 74

| bResult OP_DELETE ccyl="EUR' ccy2="GBP" ratel="0.74" ccy3="USD"
rate2="1.98" rate3="0.78" | ooprate="1.142856"

| bResult OP_DELETE ccyl="USD' ccy2="EUR' ratel="0.78" ccy3="GBP"
rate2="0.74" rate3="1.98" | ooprate="1.142856"

| bResult OP_DELETE ccyl="GBP" ccy2="USD"' ratel="1.98" ccy3="EUR'
rate2="0.78" rate3="0.74" | ooprate="1.142856"

rat e, OP_I NSERT, EUR, GBP, 0. 64

__join2.leftLookup.out OP_I NSERT ccyl="EUR' ccy2="GBP" ratel="0.64"
ccy3="USD"' rate2="1.98" rate3="0.78" | ooprate=0.988416

__join2.leftLookup.out OP_I NSERT ccyl="USD' ccy2="EUR' ratel="0.78"
ccy3="GBP" rate2="0.64" rate3="1.98" | ooprate=0.988416

__join2.rightLookup. out OP_I NSERT ccyl="GBP" ccy2="USD"' ratel="1.98"
ccy3="EUR' rate2="0.78" rate3="0.64" | ooprate=0.988416

Our trading (and perhaps other people's trading too) moves the exchange rate of euros to pounds. And with that the balance
of currenciesisrestored, and the arbitration opportunity disappears.

Now let's have a look inside JoinTwo. What is so special about the self-join? Normally the join works on two separate
tables. They get updated one at atime. Even if some common reason causes both tables to be updated, the update arrives
from onetable first. The join sees thisincoming update, looks in the unchanged second table, produces an updated result.
Then the update from the second table comes to the join, which takes it, looks in the already modified first table, and
produces another updated result.

If both inputs are from the same table, this logic breaks. Two copies of the updates will arrive, but by the time the first
one arrives, the contents of the table has been aready changed. When the join looks in the table, it gets the unexpected
results and creates a mess.

But JoinTwo has afix for this. It makes use of the Pre label of the table for its left-side update (the right side would have
worked just as good, it's just arandom choice):

ny $sel fJoin = $sel f->{leftTabl e}->sane($sel f->{right Tabl e});

if ($selfJoin && !defined $sel f->{leftFronLabel}) {
one side nust be fed fromPre |abel (but still let the user override)
$sel f->{l eft FronmLabel } = $sel f->{l eft Tabl e} - >get PrelLabel ();

}

This way when the join sees the first update, the table hasn't changed yet. And then the second copy of that update comes
though the normal output label, after the table has been modified. Everything just works out as normal and the self-joins
produce the correct result.

Self-join done with JoinTwo 211

Normally you don't need to concern yourself with this, except if you're trying to filter the data coming to the join. Then
remember that for “leftFromLabel” you have to receive the data from the table's get Pr eLabel (), not get Qut put -
Label ().

12.13. Self-join done manually

In many cases the self-joins are better suited to be done by the manual looping through the data. Thisis especially true if
the table represents a tree, linked by the parent-child node id and the processing has to navigate through the tree. Indeed,
if the tree may be of an arbitrary depth, there is no way to handle if with the common joins, you will need as many joins
as the depth of the tree (through there are some SQL extensions for the recursive self-joins).

The arbitration example can also be conveniently rewritten through the manual loops. Theinput row type, table type, table,
unit, and the main loop do not change, so | won't copy them the second time. The rest of the code is:

our $rtResult = Triceps:: RowType- >new
ccyl => "string", # currency code
ccy2 => "string", # currency code
ccy3 => "string", # currency code
ratel => "fl| oat 64",
rate2 => "fl oat 64",
rate3 => "f| oat 64",
| ooprate => "fl oat 64",
)
nmy $ixtCcyl = $ttRate->findSubl ndex("byCcyl");
nmy $ixtCcyl2 = $i xt Ccyl->fi ndSubl ndex("byCcyl12");

ny $l bResult = $uArb->makeDumryLabel ($rt Result, "l bResult");
ny $l bConpute = $uArb->makelLabel ($rtRate, "I bConpute", undef, sub {

ny ($label, $rowop) = @;

ny $row = $rowop->get Row() ;

ny $ccyl = $row >get ("ccyl");

ny $ccy2 = $row >get ("ccy2");

ny $ratel = $row >get("rate");

ny $rhi = $tRate->findl dxBy($ixtCcyl, ccyl => $ccy2);

nmy $rhi End = $rhi - >next G oupl dx($i xt Ccy12);

for (; !'$rhi->same($rhi End); $rhi = $rhi->next!ldx($ixtCcyl2)) {

ny $row2 = $rhi->get Row();
ny $ccy3 = $row2->get ("ccy2");
ny $rate2 = $row2->get("rate");

ny $rhj = $tRate->findl dxBy($i xtCcyl2, ccyl => $ccy3, ccy2 => S$ccyl);
#it's a leaf primary index, so there nay be no nore than one match
next

if ($rhj->isNull());
ny $row3 = $rhj->get Row();
ny $rate3 = $row3->get("“rate");
ny $looprate = $ratel * $rate2 * $rate3;

now build the row in nornalized order of currencies
print("____Order before: $ccyl, $ccy2, $ccy3\n");
ny $result;
if ($ccy2 It $ccy3) {
if ($ccy2 It $ccyl) { # rotate left
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),
ccyl => $ccey2,
ccy2 => $ccy3,
ccy3 => $cceyl,
ratel => $rate2,
rate2 => $rates,

212 Joins

rate3 => $ratel,
| ooprate => $l ooprate,

)

} else {
if ($ccy3 It $ccyl) { # rotate right
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),
ccyl => $ccy3,
ccy2 => $cceyl,
ccy3 => $ccey2,
ratel => $rates,
rate2 => $ratel,
rate3 => $rate2,
| ooprate => $l ooprate,
)
}

if (!defined $result) { # use the straight order
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),

ccyl => $cceyl,

ccy2 => $ccey2,

ccy3 => $ccy3,

ratel => $ratel,

rate2 => $rate2,

rate3 => $rates3,

| ooprate => $l ooprate,

)

}
if ($looprate > 1) {
$SUArb->cal | ($resul t);
} else {
print("__", $result->printP(), "\n"); # for debugging
}
}
1)
$t Rat e- >get Qut put Label () - >chai n($l bConput e) ;
makePri nt Label ("I bPrint", $l bResult);

Whenever a new rowop is processed in the table, it goes to the label $| bConput e. The row in this rowop is the first
leg of the triangle. The loop then finds al the possible second legs that can be connected to the first leg. And then for
each second leg it checks whether it can make the third leg back to the original currency. If it can, good, we've found a
candidate for aresult row.

The way the loops work, this time there is no triplication. But the same triangle still can be found starting from any of
its three currencies. This means that to keep the data consistent, no matter what was the first currency in a particular run,
it still must produce the exact same result row. To achieve that, the currencies get rotated as explained in the previous
section, making sure that the first currency is has the lexically smallest name. These if-el se statements do that by selecting
the direction of rotation (if any) and build the result record in one of three ways.

Finally it compares the combined rate to 1, and if greater then sends the result. If not, a debugging printout starting with
“__” printsthe row, so that is can be seen. Another debugging printout prints the original order of the currencies, letting
us check that the rotation was performed correctly.

On feeding the same input data this code produces the result:

rat e, OP_I NSERT, EUR, USD, 1. 48
rat e, OP_I NSERT, USD, EUR, 0. 65
rat e, OP_I NSERT, GBP, USD, 1. 98
rat e, OP_I NSERT, USD, GBP, 0. 49
rat e, OP_I NSERT, EUR, GBP, 0. 74
____Oder before: EUR GBP, USD

Self-join done manually 213

__ I bResult OP_INSERT ccyl="EUR' ccy2="GBP" ccy3="USD"' ratel="0.74"
rate2="1.98" rate3="0.65" | ooprate="0.95238"

rat e, OP_| NSERT, GBP, EUR, 1. 30

_____Oder before: @GP, EUR USD

__I bResult OP_INSERT ccyl="EUR' ccy2="USD"' ccy3="GBP" ratel="1.48"
rate2="0.49" rate3="1.3" | ooprate="0.94276"

rat e, OP_DELETE, EUR, USD, 1. 48

____Oder before: EUR USD, GBP

__ I bResult OP_DELETE ccyl="EUR' ccy2="USD"' ccy3="GBP" ratel="1.48"
rate2="0.49" rate3="1.3" | ooprate="0.94276"

rat e, OP_I NSERT, EUR, USD, 1. 28

_____Oder before: EUR USD, GBP

_ I bResult OP_INSERT ccyl="EUR' ccy2="USD"' ccy3="GBP" ratel="1.28"
rate2="0.49" rate3="1.3" |ooprate="0.81536"

rat e, OP_DELETE, USD, EUR, 0. 65

____Oder before: USD, EUR GBP

__ | bResult OP_DELETE ccyl="EUR' ccy2="GBP" ccy3="USD"' ratel="0.74"
rate2="1.98" rate3="0.65" | ooprate="0.95238"

rat e, OP_| NSERT, USD, EUR, 0. 78

____Oder before: USD, EUR GBP

| bResult OP_I NSERT ccyl="EUR"' ccy2="GBP" ccy3="USD' ratel="0.74"
rate2="1.98" rate3="0.78" | ooprate="1.142856"

rat e, OP_DELETE, EUR, GBP, 0. 74

_____Oder before: EUR GBP, USD

| bResult OP_DELETE ccyl="EUR' ccy2="GBP" ccy3="USD' ratel="0.74"
rate2="1.98" rate3="0.78" | ooprate="1.142856"

rat e, OP_| NSERT, EUR, GBP, 0. 64

_____Oder before: EUR GBP, USD

__I bResult OP_INSERT ccyl="EUR' ccy2="GBP" ccy3="USD"' ratel="0.64"
rate2="1.98" rate3="0.78" | ooprate="0.988416"

It's the same result as before, only without the triplicates. And you can see that the rotation logic works right. The manual
self-joining has produced the result without triplicates, without an intermediate table, and for me writing and understanding
itslogic is much easier than with the “proper” joins. I'd say that the manual self-joinisawinner in every respect.

Aninteresting thing isthat this manual logic produces the same result independently of whether it's connected to the Output
or Prelabel of thetable. Try changing it, it worksthe same. Thisis because the original row istaken directly from the input
rowop, and never participatesin thejoin again; it's never read from the table by any of the loops. If it were read again from
the table by the loops, the table connection would matter. And the correct one would be fairly weird: the INSERT rowops
would have to be processed coming from the Output label, the DELETE rowops coming from the Pre |abel.

Thisis because the row hasto bein the table to be found. And for an INSERT the row gets there only after it goes through
the table and comes out on the Output label. But for a DELETE the row would get already deleted from the table by that
time. Instead it has to be handled before that, on the Pre label, when the table only prepares to delete it.

If you look at the version with JoinTwo, that's also how an inner self-join works. Sinceit's an inner join, both rows on both
sides must be present to produce aresult. An INSERT first arrives from the Pre label on the left side, doesn't find itself in
thetable, and produces no result (again, we're talking here about the situation when arow hasto get joined to itself; it might
well find the other pairsfor itself and produce aresult for them but not for itself joined with itself). Thenit arrivesthe second
time from the Output |abel on theright side. Now it looksin the table, and findsitself, and produces the result (an INSERT
coming form the join). A DELETE aso first arrives from the Pre label on the left side. It finds its copy in the table and
produces the result (a DELETE coming from the join). When the second copy of the row arrives from the Output label on
theright side, it doesn't find its copy in the table any more, and produces nothing. In the end it'sthe samething, an INSERT
comes out of thejoin triggered by the table Output label, a DELETE comes out of the join triggered by the table Pre label.
It's not awhimsy, it's caused by the requirements of the correctness. The manual self-join would have to mimic this order
to produce the correct result. In such a situation perhaps JoinTwo would be easier to use than doing things manually.

12.14. Self-join done with a LookupJoin

214 Joins

The experience with the manual join has made me think about using asimilar approach to avoid triplication of the datain
the version with join templates. And after some false-starts, |'ve realized that what that version needs is the L ookupJoins.

They replace the loops. So, one more version is:

our $joinl = Triceps::LookupJoi n->new(
name => "joi nl",
| ef t FromLabel => $t Rat e- >get Qut put Label (),
leftFields => ["ccyl", "ccy2", "ratel/ratel"],
ri ght Table => $tRate,
rightldxPath => ["byCcyl" 1,
rightFields => ["ccy2/ccy3", "rate/rate2"],
byLeft => ["ccy2/ccyl"],
isLeft => 0,

); # would die by itself on an error

our $join2 = Triceps::LookupJoi n->new(
name => "joi n2",
| ef t FromLabel => $j oi nl1- >get Qut put Label (),
ri ght Table => $tRate,
rightldxPath => ["byCcyl", "byCcyl2"],
rightFields => ["rate/rate3"],
byLeft => ["ccy3/ccyl", "ccyl/ccy2"],
isLeft => 0,

); # would die by itself on an error

now conpute the resulting circular rate and filter the profitable | oops
our $rtResult = Triceps:: RowType- >new

$j oi n2- >get Resul t RowType() - >get def (),

| ooprate => "fl oat 64",

~

| bResult = $uArb- >makeDunmyLabel ($rt Result, "l bResult");

| bConput e = $uAr b- >makelLabel ($j oi n2- >get Resul t RowType(), "Il bCompute", undef,
($l abel, $rowop) = @;
$row = $r owop- >get Row() ;

$row >get ("ccyl");
$row >get ("ccy2");
$row >get ("ccy3");
$row >get ("ratel");
$rate2 = $row >get ("rate2");
$rate3 $row >get ("rate3");
$looprate = $ratel * $rate2 * $rate3;

$ccy2
$ccy3
$ratel

ny $

ny $
ny
ny
ny $ccyl
ny
ny
ny
ny
ny
ny

now build the row in nornalized order of currencies
print("____Order before: $ccyl, $ccy2, $ccy3\n");
ny $result;
if ($ccy2 It $ccy3) {
if ($ccy2 It $ccyl) { # rotate left
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),

ccyl => $ccey2,
ccy2 => $ccy3,
ccy3 => $cceyl,

ratel => $rate2,
rate2 => $rates,
rate3 => $ratel,
| ooprate => $l ooprate,
)
}
} else {
if ($ccy3 It $ccyl) { # rotate right

sub {

Self-join done with a LookupJoin

215

$resul t $l bResul t - >makeRowopHash($r owop- >get Opcode(),

ccyl => $ccy3,
ccy2 => $cceyl,
ccy3 => $ccey2,

ratel => $rate3,
rate2 => $ratel,
rate3 => $rate2,
| ooprate => $l ooprate,
)
}

if (!defined $result) { # use the straight order
$result = $l bResul t - >makeRowopHash($r owop- >get Opcode(),

ccyl => $cceyl,

ccy2 => $ccey2,

ccy3 => $ccy3,

ratel => $ratel,

rate2 => $rate2,

rate3 => $rates3,

| ooprate => $l ooprate,

)

}
if ($looprate > 1) {
$UArb->cal | ($resul t);
} else {
print("__", $result->printP(), "\n"); # for debugging
}
1)
$j 0i n2- >get Qut put Label () - >chai n($l bConput e) ;

It produces the exact same result as the version with the manual loops, with the only minor difference of the field order
in the result rows.

And, in retrospect, | should have probably made a function for the row rotation, so that | would not have to copy that
code here.

WEell, it works the same as the version with the loops and maybe even looks a little bit neater, but in practice it's much
harder to write, debug and understand. The cavest for the situation where the incoming row might participate in the join
the second time appliesto this version of the code as well. The same thing about the Pre and Output labels would have to
be done, resulting in four LookupJoins instead of two. Each pair would become a manually-built analog of JoinTwo, and
probably it's easier to use a JoinTwo to start with.

12.15. A glimpse inside JoinTwo and the hidden
options of LookupJoin

The internals of JoinTwo provide an interesting example of atemplate that builds upon other template (LookupJoin). For
a while JoinTwo was compact and straightforward, and easy to demonstrate. Then it has grown all these extra features,
optionsand error checks, and became quite complicated. So I'll show only the selected portions of the JoinTwo constructor,
with the gist of its functionality:

ny $sel fJoin = $sel f->{leftTabl e}->sanme($sel f->{rightTable});

if ($selfJoin && !defined $sel f->{leftFronLabel}) {
one side nust be fed fromPre |abel (but still let the user override)
$sel f->{l eft FronLabel } = $sel f->{l eft Tabl e} - >get PreLabel ();

}

my ($leftLeft, $rightlLeft);

216 Joins

if ($self->{type} eq "inner") {
$leftLeft = O;
$rightLeft = 0;

} elsif ($self->{type} eq "left") {
$leftLeft = 1;
$rightLeft = 0;

} elsif ($self->{type} eq "right") {
$leftLeft = O;
$rightLeft = 1;

} elsif ($self->{type} eq "outer") {
$leftlLeft = 1;
$rightLeft = 1;

} else {
Car p: : confess("Unknown value '" . $self->{type} . "' of option 'type', must be one of
inner|left|right|outer");
}

$sel f->{| ef t RowType} = $sel f->{I| ef t Tabl e} - >get RowType();
$sel f->{ri ght RowType} = $sel f->{right Tabl e} - >get RowType();

for my $side (("left", "right")) {
if (defined $sel f->{"${side}FronlLabel"}) {

} else {
$sel f->{"${side}FronlLabel "} = $sel f->{"${si de} Tabl e"}->get Qut put Label ();
}

ny @eys;

($sel f->{"${side}l dxType"}, @keys) = $sel f->{"${side} Tabl e"}->get Type() -
>f i ndl ndexKeyPat h(@ $sel f->{"${side}l dxPath"}});

woul d already confess if the index is not found

if (!$self->{overrideSi npl eM nded}) {
if (!$self->{"${side}ldxType"}->isLeaf()

&& ($sel f->{type} ne "inner" && $self->{type} ne $side)) {
ny $table = $sel f->{"${side}Table"};
ny $ixt = $sel f->{"${side}l dxType"};
if ($selfloin & & $side eq "left") {
the special case, reading fromthe table's Pre | abel;
nmust adjust the count for what will happen after the row gets processed
$sel f->{"${side} G oupSi zeCode"} = sub { # (opcode, row)
if (&Triceps::islnsert($_[0])) {
$t abl e- >gr oupSi zel dx($i xt, $_[1])+1;
} else {
$t abl e- >gr oupSi zel dx($i xt, $ [1])-1;
}
s
} else {
$sel f->{"${side} G oupSi zeCode"} = sub { # (opcode, row)
$t abl e- >groupSi zel dx($i xt, $_[1]);
s
}
}
}

ny $fieldsMrrorKey = 1;
ny $uniq = $sel f->{fiel dsUni gKey};
if ($uniq eq "first") {

A glimpse inside JoinTwo and the hidden options of LookupJoin 217

$uniq = $sel f->{fieldsLeftFirst} ? "left" : "right";
}
if ($uniqg eq "none") ({
$fieldsMrrorKey = 0;
} elsif ($uniq eq "manual ") {
nothing to do
} elsif ($uniqg =~ /~(left|right)$/) {
ny($si de, @eys);
if ($uniq eq "left") {

$side = "right";

@eys = @i ghtkeys;
} else {

$side = "left";

@eys = @eftkeys;

}
if ('defined $sel f->{"${side}Fields"}) {
$sel f->{"${side}Fields"} =[".*"], # the inplicit pass-all

}
unshift (@ $sel f->{"${side}Fields"}}, map("!$_", @xeys));

} else {
Car p: : confess("Unknown value "" . $self->{fieldsUnigKey} . "' of option
"fieldsUni gkey', must be one of none|nmanual |left|right|first");
}

now create the LookupJoins

$sel f->{1 eft Lookup} = Triceps:: LookupJoi n->new
unit => $sel f->{unit},
name => $sel f->{nanme} . ".|eftLookup",
| ef t RowType => $sel f->{| ef t RowType},
ri ght Tabl e => $sel f->{ri ght Tabl e},
rightldxPath => $sel f->{rightldxPath},
leftFields => $sel f->{leftFields},
rightFields => $sel f->{rightFields},
fieldsLeftFirst => $sel f->{fieldsLeftFirst},
fieldsMrrorKey => $fiel dsMrrorKey,
by => \ @eft by,
isLeft => $leftlLeft,
automatic => 1,
oppositeQuter => ($rightLeft && !$sel f->{overrideSi npl eM nded}),
groupSi zeCode => $sel f->{| ef t G oupSi zeCode},
savelJoi ner To => $sel f->{l| ef t SaveJoi ner To},

)

$sel f->{ri ght Lookup} = Triceps::LookupJoi n->new
unit => $sel f->{unit},
name => $sel f->{nanme} . ".rightLookup",
| ef t RowType => $sel f->{ri ght RowType},
right Tabl e => $sel f->{l eft Tabl e},
rightldxPath => $sel f->{|eftldxPath},
leftFields => $sel f->{rightFields},
rightFields => $sel f->{leftFields},
fieldsLeftFirst => ! $self->{fieldsLeftFirst},
fieldsMrrorKey => $fiel dsMrrorKey,
by => \ @i ght by,
isLeft => $rightLeft,
automatic => 1,
oppositeQuter => ($leftLeft && !$sel f->{overrideSi npl eM nded}),
groupSi zeCode => $sel f->{ri ght G oupSi zeCode},
savelJoi ner To => $sel f->{ri ght SaveJoi ner To},

)

create the output | abel

218 Joins

$sel f->{out put Label } = $sel f->{unit}->makeDunmyLabel ($sel f->{l ef t Lookup} -
>get Resul t RowType(), $self->{nane} . ".out");

and connect them together

$sel f->{l| ef t FronlLabel } - >chai n($sel f->{I ef t Lookup}- >get | nput Label ());
$sel f->{ri ght FronlLabel }->chai n($sel f->{ri ght Lookup}->get | nput Label ());
$sel f->{| ef t Lookup} - >get Qut put Label () - >chai n($sel f - >{ out put Label });
$sel f->{ri ght Lookup}->get Qut put Label () ->chai n($sel f->{out put Label });

In the end it boils down to two L ookupJoins, with the options computed from the JoinTwo's options. But you might notice
that there are afew LookupJoin options that haven't been described before.

Despitethetitle of the section, these optionsaren't really hidden, just they aren't particularly useful unlessyou want to usea
LookupJoin as apart of amulti-sided join, like JoinTwo does. It's even hard to explain what do they do without explaining
the JoinTwo first. If you're not interested in such details, you can as well skip them.

So, setting
oppositeCuter => 1,

tells that this LookupJdoin is a part of an outer join, with the opposite side (right side, for this LookupJoin) being an outer
one (well, thisside might be outer too if i sLeft => 1, but that's awhole separate question). This enables the logic that
checks whether the row inserted here isthe first one that matches arow in the right-side table, and whether the row deleted
here was the last one that matches. If the condition is satisfied, not asimple INSERT or DELETE rowop is produced but a
correct DELETE-INSERT pair that replacesthe old state with the new one. It has been described in detail in Section 12.8:
“JoinTwo joins two tables’ (p. 195) .

But how does it know whether the current row if the first one or last one or neither? After all, LookupJoin doesn't have
any accessto the left-side table.

It has two ways to know. First, by default it smply assumes that it's an one-to-something (1:1 or 1:M) join. Then there
may be no more than one matching row on this side, and every row inserted is the first one, and every row deleted is the
last one. Then it does the DELETE-INSERT trick every time.

Second, the option
groupSi zeCode => \ &groupSi zeConput ati on,

can be used to compute the current group size for the current row. It provides a function that does the computation and
getscaled as

$gsz = & $sel f->{groupSi zeCode}} ($opcode, $row);

Note that it doesn't get the table reference nor the index type reference as arguments, so it has to be a closure with the
references compiled into it. JoinTwo does it with the definition

sub { # (opcode, row)
$t abl e- >groupSi zel dx($i xt, $_[1]);
}

Why not just pass the table and index type references to JoinTwo and let it do the same computation without the mess of
the closure references? Because the group size computation may need to be different. When the JoinTwo does a self-join, it
feeds the left side from the table's Pre label, and the normal group size computation would be incorrect because the rowop
didn't get applied to the table yet. Instead it has to predict what will happen when the rowop will get applied:

sub { # (opcode, row)
if (&Triceps::islnsert($_[0])) {
$t abl e- >gr oupSi zel dx($i xt, $_[1])+1;
} else {
$t abl e- >gr oupSi zel dx($i xt, $ [1])-1;

A glimpse inside JoinTwo and the hidden options of LookupJoin 219

}
}

If you set the option “groupSizeCode’ to undef , that's the default value that triggers the one-to-something behavior.

The option
fieldsMrrorKey => 1,

has been aready described. It enablesanother magic behavior: mirroring thevaluesof key fieldsto both sidesbeforethey are
used to produce theresult row. Thisisthe heavy machinery that underliesthe JoinTwo's high-level option“fieldsUnigKey”.
But it hasn't been described yet that the mirroring goes both ways: If thisis aleft join and no matching row is found on
the right, the values of the key fields will be copied from the left to the right. If the option “oppositeOQuter” is set and
causes a row with the empty left side to be produced as a part of DELETE-INSERT pair, the key fields will be copied
from the right to the left.

220 Joins

Chapter 13. Time processing
13.1. Time-limited propagation

When aggregating data, often the results of the aggregation stay relevant longer than the original data.

For example, in the financials the data gets collected and aggregated for the current business day. After the day is closed,
the day's detailed data are not interesting any more, and can be deleted in preparation for the next day. However the daily
results stay interesting for along time, and may even be archived for years.

Thisis not limited to the financials. A long time ago, in the times of slow and expensive Internet connections, I've done
atraffic accounting system. It did the same: as the time went by, less and less detail was kept about the traffic usage. The
modern accounting of the click-through advertisement also worksin asimilar way.

An easy way to achieve this result is to put afilter on the way of the aggregation results. It would compare the current
idea of time and the time in the rows going by, and throw away the rows that are too old. This can be done as a label
that gets the data from the aggregator and then forwards or doesn't forward the data to the real destination, and has been
already shown. This solves the propagation problem but as the obsolete original data gets deleted, the aggregator will still
be churning and producing the updates, only to have them thrown away at the filter. A more efficient way is to stop the
churn by placing the filter right into the aggregator.

The next example demonstrates such an aggregator, in asimplified version of that traffic accounting system that |'ve once
done. The example is actually about more than just stopping the data propagation. That stopping accounts for about three
linesinit. But | also want to show a simple example of traffic accounting as such. And to show that the lack of the direct
time support in Triceps does not stop you from doing any time-based processing. Because of this I'll show the whole
example and not just snippetsfrom it. But since the exampleishbiggish, I'll pasteit into thetext in pieceswith commentaries
for each piece.

our $uTraffic = Triceps::Unit->new("uTraffic");

one packet's header

our $rtPacket = Triceps:: RowType->new
time => "int64", # packet's tinestanp, mcroseconds
local _ip => "string", # string to nake easier to read
renote_ip => "string", # string to make easier to read
I ocal _port => "int32",
renote_port => "int32",
bytes => "int32", # size of the packet

)

an hourly sunmary

our $rtHourly = Triceps:: RowType->new(
time => "int64", # hour's tinmestanp, m croseconds
local _ip => "string", # string to nake easier to read
renote_ip => "string", # string to make easier to read
bytes => "int64", # bytes sent in an hour

)

The router to the ISP forwards us the packet header information from all the packets that go though the outside link. The
| ocal _i p isaways the address of a machine on our network, r enpt e_i p outside our network, no matter in which
direction the packet went. With a slow and expensive connection, we want to know two things: First, that the provider's
billing at the end of the month is correct. Second, to be able to find out the high traffic users, when was the traffic used,
and then maybe look at the remote addresses and decide whether that traffic was used for the business purposes or not.
This example goes up to aggregation of the hourly summaries and then stops, since the further aggregation by days and
months is straightforward to do.

221

If thereis no traffic for awhile, the router is expected to periodically communicate its changing idea of time as the same
kind of records but with the non-timestamp fields as NULLs. That by the way is the right way to communicate the time-
based information between two machines: do not rely on any local synchronization and timeouts but have the master send
the periodic time updates to the slave even if it has no data to send. The logic is then driven by the time reported by the
master. A nice side effect isthat thelogic can also easily bereplayed later, using these timestamps and without any concern
of thereal time. If there are multiple masters, the slave would have to order the data coming from them according to the
timestamps, thus synchronizing them together.

The hourly data drops the port information, and sums up the traffic between two addresses in the hour. It still has the
timestamp but now this timestamp is rounded to the start of the hour:

conpute an hour-rounded tinestanp
sub hourStanmp # (tine)
{
return $_[0] - ($_[0] % (1000*1000*3600));
}

Next, to the aggregation. The SimpleAggregator has no provision for filtering in it, the aggregation has to be done raw.

the current hour stanp that keeps bei ng updated
our $current Hour;

aggregation handler: recal culate the summary for the |ast hour
sub conmputeHourly # (table, context, aggop, opcode, rh, state, args...)
{

ny ($table, $context, $aggop, $opcode, $rh, $state, @rgs) = @;

our S$current Hour;

don't send the NULL record after the group becones enpty
return i f ($context->groupSi ze()==
| | $opcode == &Triceps:: OP_NOP);

ny $rhFirst = $context->begin();
ny $rFirst = $rhFirst->get Row();
ny $hourstanp = &hour Stanp($rFirst->get ("tinme"));

return i f ($hourstanp < $currentHour);

if ($opcode == &Triceps:: OP_DELETE) ({
$cont ext - >send($opcode, $$state);
return;

}

ny $bytes = 0;
for (nmy $rhi = $rhFirst; !$rhi->isNull();
$rhi = $context->next ($rhi)) {
$bytes += $rhi ->get Row() - >get (" bytes");
}

ny $res = $context->result Type() - >makeRowHash(
time => $hour st anp,
local _ip => $rFirst->get("local _ip"),
renote_ip => $rFirst->get("renote_ip"),
bytes => $bhytes,

)

${$state} = $res;

$cont ext - >send($opcode, $res);

}

sub initHourly # (@args)
{

222 Time processing

ny $refvar;
return \ $refvar;

}

The aggregation doesn't try to optimize by being additive, to keep the example simpler. The model keeps the notion of the
current hour. As soon as the hour stops being current, the aggregation for it stops. The result of that aggregation will then
be kept unchanged in the hourly result table, no matter what happens to the original data.

The tables are defined and connected thusly:

the full stats for the recent tine
our $ttPackets = Triceps:: Tabl eType->new($rt Packet)
- >addSubl ndex(" byHour ",
Triceps:: |1 ndexType->newPer | Sort ed("byHour", undef, sub {
return &hour Stanp($_[0]->get ("tine")) <=> &hour Stanp($_[1]->get("tine"));
})
- >addSubl ndex(" byl P",
Triceps:: | ndexType- >newHashed(key => ["local _ip", "renote_ip"])
- >addSubl ndex(" gr oup",
Triceps:: | ndexType->newFi f o()
- >set Aggr egat or (Tri ceps: : Aggr egat or Type- >new
$rtHourly, "aggrHourly", \& nitHourly, \&conputeHourly)

$ttPackets->initialize();
our $tPackets = $uTraffic->makeTabl e($tt Packets, "tPackets");

the aggregated hourly stats, kept |onger
our $ttHourly = Triceps:: Tabl eType->new $rt Hourl y)
- >addSubl ndex(" byAggr",
Tri ceps:: Si npl eOr der edl ndex- >new(
time => "ASC', local _ip => "ASC', renote_ip => "ASC")

)

$ttHourly->initialize();
our $tHourly = $uTraffic->makeTabl e($ttHourly, "tHourly");

connect the tables
$t Packet s- >get Aggr egat or Label ("aggr Hour | y") - >chai n($t Hour | y- >get | nput Label ());

Thetable of incoming packets hasa3-level index: it starts with being sorted by the hour part of the timestamp, then goes by
the ip addresses to complete the aggregation key, and then a FIFO for each aggregation group. Arguably, maybe it would
have been better to include theip addresses straight into the top-level sorting index, | don't know, and it doesn't seem worth
measuring. The top-level ordering by the hour isimportant, it will be used to delete the rows that have become old.

The table of hourly aggregated stats uses the same kind of index, only now there is ho need for a FIFO because there is
only one row per this key. And the timestamp is already rounded to the hour right in the rows, so a SimpleOrderedindex
can be used without writing a manual comparison function, and the ip fields have been merged into it too.

The output of the aggregator on the packets table is connected to the input of the hourly table.

label to print the changes to the detailed stats

nmakePri nt Label ("1 bPri nt Packet s", $tPackets->get Qut putLabel ());
label to print the changes to the hourly stats

nmakePri nt Label ("1 bPrint Hourl y", $tHourly->get Qut put Label ());

Time-limited propagation 223

dunp a table's contents
sub dunpTabl e # ($table)

ny $table = shift;
for (ny $rhit = $table->begin(); !'$rhit->isNull(); $rhit = $rhit->next()) {
print($rhit->getRow()->printP(), "\n");
}
}

how long to keep the detailed data, hours
our $keepHours = 2;

flush the data ol der than $keepHours from $t Packets
sub flushd dPackets

{
ny $earliest = $currentHour - $keepHours * (1000*1000*3600);
ny $next;
the default iteration of $tPackets goes in the hour stanp order
for (ny $rhit = $tPackets->begin(); !$rhit->isNull(); $rhit = $next) {
last if (&hourStanp($rhit->getRow)->get("time")) >= $earliest);
$next = $rhit->next(); # advance before renoval
$t Packet s->renmove($rhit);
}
}

The print labels generate the debugging output that shows what is going on with both tables. Next go a couple of helper
functions.

ThedunpTabl e() isastraightforward iteration through atable and print. It can be used on any table, pri nt P() takes
care of any differences.

The flushing goes through the packets table and deletes the rows that belong to an older hour than the current one or
$keepHour s beforeit. For this to work right, the rows must go in the order of the hour stamps, which the outer index
“byHour” takes care of.

All thetime-related |ogic expectsthat the time never goes backwards. Thisisasimplification to make the example shorter,
a production code can not assume this.

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a cormand, then string opcode
ny $type = shift @lata;

if ($type eq "new') ({
nmy $rowop = $t Packet s- >get | nput Label () - >makeRowopAr r ay(@lat a) ;
update the current notion of time (sinplistic)
$current Hour = &hour St anp($r owop- >get Row() - >get ("time"));
if (defined($rowp->get Row)->get("local _ip"))) {
$uTraffic->call ($rowop);

}
& | ushd dPackets(); # flush the packets
$uTraffic->drainFrane(); # just in case, for conpl eteness
} elsif ($type eq "dunpPackets") {
&dunpTabl e($t Packet s) ;
} elsif ($type eq "dumpHourly") {
&dunmpTabl e($t Hour | y) ;
}
}

The final part is the main loop. The input comes in the CSV form as a command followed by more data. If the command
is“new” then the datais the opcode and data fields, as it would be sent by the router. The commands “ dumpPackets’ and
“dumpHourly” are used to print the contents of the tables, to see, what is going on in them.

224 Time processing

In an honest implementation there would be a separate label that would differentiate between areported packet and just a
time update from the router. Here for simplicity thislogic is placed right into the main loop. On each input record it updates
the model's idea of the current timestamp, then if there is a packet data, it gets processed, and finally the rows that have
become too old for the new timestamp get flushed.

Now arun of the model. Its printout is also broken up into the separately commented pieces. Of course, it's not like areal
run, it just contains one or two packets per hour to show how things work.

new, OP_| NSERT, 1330886011000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 100

t Packets. out OP_I NSERT ti ne="1330886011000000" I ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="100"

t Hourly. out OP_I NSERT tine="1330884000000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="100"

new, OP_| NSERT, 1330886012000000, 1. 2. 3.4, 5. 6. 7. 8, 2000, 80, 50

t Hourly. out OP_DELETE ti ne="1330884000000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="100"

t Packets. out OP_I NSERT ti ne="1330886012000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="50"

t Hourly. out OP_I NSERT tine="1330884000000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="150"

The two input rows in the first hour refer to the same connection, so they go into the same group and get aggregated
together in the hourly table. The rows for the current hour in the hourly table get updated immediately as more data comes
in. Thet Hour | y. out OP_DELETE comesout even beforet Packet s. out OP_| NSERT because it's driven by the
output of the aggregator on $t Packet s, and the operation AO_BEFORE_MOD on the aggregator that drives the deletion
is executed before $t Packet s gets modified.

new, OP_| NSERT, 1330889811000000, 1. 2. 3. 4,5.6. 7. 8, 2000, 80, 300

t Packets. out OP_I NSERT ti nme="1330889811000000" | ocal _i p="1.2. 3. 4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="300"

t Hourly. out OP_I NSERT tinme="1330887600000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="300"

Only one packet arrives in the next hour.

new, OP_| NSERT, 1330894211000000, 1. 2. 3.5,5.6. 7.9, 3000, 80, 200

t Packets. out OP_I NSERT ti ne="1330894211000000" |ocal _i p="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="200"

t Hourly. out OP_I NSERT tine="1330891200000000" |ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" bytes="200"

new, OP_| NSERT, 1330894211000000, 1. 2. 3. 4,5.6. 7. 8, 2000, 80, 500

t Packets. out OP_I NSERT ti ne="1330894211000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="500"

t Hourly. out OP_I NSERT tine="1330891200000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="500"

And two more packets in the next hour. They are for the different connections, so they do not get summed together in the
aggregation. When the hour changes again, the old data will start being deleted (because of $keepHours = 2, which
ends up keeping the current hour and two before it), so let's take a snapshot of the tables' contents.

dunpPacket s

time="1330886011000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="100"

time="1330886012000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="50"

time="1330889811000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="300"

time="1330894211000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="500"

time="1330894211000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"
| ocal _port="3000" renote_port="80" bytes="200"

Time-limited propagation 225

dunpHour |y

ti me="1330884000000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 150"

ti me="1330887600000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es="300"

time="1330891200000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es="500"

time="1330891200000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"
byt es="200"

The packets table shows all the 5 packets received so far, and the hourly aggregation results for al 3 hours (with two
separate aggregation groups in the same last hour, for different ip pairs).

new, OP_| NSERT, 1330896811000000, 1. 2. 3.5, 5. 6. 7. 9, 3000, 80, 10

t Packets. out OP_I NSERT ti ne="1330896811000000" |ocal _i p="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="10"

t Hourly. out OP_I NSERT tine="1330894800000000" |ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" bytes="10"

t Packets. out OP_DELETE ti ne="1330886011000000" |ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" l|ocal _port="2000" renote_port="80" bytes="100"

t Packets. out OP_DELETE ti ne="1330886012000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="50"

When the next hour's packet arrives, it gets processed as usual, but then the removal logic finds the packet rows that
have become too old to keep. It kicks in and deletes them. But notice that the deletions affect only the packets table, the
aggregator ignores this activity as too old and does not propagate it to the hourly table.

new, OP_| NSERT, 1330900411000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 40

t Packets. out OP_I NSERT ti nme="1330900411000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="40"

t Hourly. out OP_I NSERT tinme="1330898400000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="40"

t Packets. out OP_DELETE tinme="1330889811000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="300"

One more hour's packet, flushes out the data for another hour.

new, OP_| NSERT, 1330904011000000

t Packets. out OP_DELETE tinme="1330894211000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="500"

t Packets. out OP_DELETE ti nme="1330894211000000" | ocal _i p="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="200"

And just atime update for another hour, when no packets have been received. The removal logic still kicks in and works
the same way, deleting raw data for one more hour. After all this activity let's dump the tables again:

dunpPacket s

ti me="1330896811000000" | ocal _ip="1.2.3.5" renote_i p="5.6.7.9"
| ocal _port="3000" renote_port="80" bytes="10"

time="1330900411000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="40"

dunpHour |y

ti me="1330884000000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 150"

ti me="1330887600000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es="300"

time="1330891200000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es="500"

ti me="1330891200000000" | ocal _ip="1.2.3.5" renote_i p="5.6.7.9"
byt es="200"

ti me="1330894800000000" | ocal _ip="1.2.3.5" renote_i p="5.6.7.9"
byt es="10"

226 Time processing

ti me="1330898400000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 40"

The packetstable only has the data for the last 3 hours (there are no rows for the last hour because none have arrived). But
the hourly table contains all the history. The rows weren't getting deleted here.

13.2. Periodic updates

In the previous example if we keep aggregating the data from hours to days and the days to months, then the arrival of each
new packet will update the whole chain. Sometimes that's what we want, sometimes it isn't. The daily stats might be fed
into some complicated computation, with nobody |ooking at the results until the next day. In this situation each packet will
trigger these complicated computations, for no good reason, since nobody cares for them until the day is closed.

These unnecessary computations can be prevented by disconnecting the daily data from the hourly data, and performing
the manual aggregation only when the day changes. Then these complicated computations would happen only once a day,
not many times per second.

Here is how the last example gets amended to produce the once-a-day daily summaries of al the traffic (as before, in
multiple snippets, this time showing only the added or changed code):

an hourly summary, now with the day extracted

our $rtHourly = Triceps:: RowType- >new(
time => "int64", # hour's tinmestanp, m croseconds
day => "string", # in YYYYMVDD
local _ip => "string", # string to nake easier to read
renote_ip => "string", # string to make easier to read
bytes => "int64", # bytes sent in an hour

)

a daily summary: just all traffic for that day
our $rtDaily = Triceps:: RowType- >new(

day => "string", # in YYYYMVDD

bytes => "int64", # bytes sent in an hour

)

The hourly rows get an extra field, for convenient aggregation by day. And the daily rows are introduced. The notion of
the day is calculated as:

conpute the date of a timestanp, a string YYYYMVDD
sub dateStanp # (tine)

{
ny @s = gntine($_[0]/1000000); # mcroseconds to seconds

return sprintf("994d992d902d", $ts[5]+1900, $ts[4]+1, $ts[3]);
}

the current hour stanp that keeps bei ng updated
our $current Hour = undef;
the current day stanp that keeps bei ng updated
our $currentDay = undef;

The calculation isdonein GMT, so that the code produces the same result all around the world. If you're doing this kind of
project for real, you may want to use the local time zone instead (but be careful with the changing daylight saving time).

And the model keeps a global notion of the current day in addition to the current hour.

aggregation handler: recal culate the summary for the |ast hour
sub comput eHour | ywDay # (table, context, aggop, opcode, rh, state, args...)
{

ny $res = $context->resul t Type() - >makeRowHash(

Periodic updates 227

time => $hour st anp,
day => &dat eSt anp($hour st anp),
local _ip => $rFirst->get("local _ip"),
renote_ip => $rFirst->get("renote_ip"),
bytes => $bytes,

)

${$state} = $res;

$cont ext - >send($opcode, $res);

}
The packets-to-hour aggregation function now populates this extrafield, the rest of it stays the same.

the aggregated hourly stats, kept |onger
our $ttHourly = Triceps:: Tabl eType->new $rt Hourl y)
- >addSubl ndex(" byAggr",
Tri ceps:: Si npl eOr der edl ndex- >new(
time => "ASC', local _ip => "ASC', renote_ip => "ASC")

)
- >addSubl ndex(" byDay",
Tri ceps:: |1 ndexType- >newHashed(key => ["day"])
- >addSubl ndex(" gr oup",
Triceps:: 1 ndexType->newFi f o()
)
)

)

$ttHourly->initialize();
our $tHourly = $uTraffic->makeTabl e($ttHourly, "tHourly");

renmenber the daily secondary index type
our $i dxHourlyByDay = $ttHourly->findSubl ndex("byDay");
our $i dxHourl yByDayG oup = $i dxHour | yByDay- >f i ndSubl ndex(" group");

The hourly table type grows an extra secondary index for the manuall aggregation into the daily data.
the aggregated daily stats, kept even |onger
our $ttDaily = Triceps:: Tabl eType->new($rt Dail y)

- >addSubl ndex(" byDay",
Triceps:: | ndexType- >newHashed(key => ["day"])
)

1

$ttDaily->initialize();
our $tDaily = $uTraffic->nmakeTabl e($ttDaily, "tDaily");

label to print the changes to the daily stats
mekePri nt Label ("I bPrintDaily", $tDaily->get QutputLabel ());

And atable for the daily datais created but not connected to any other tables.

Instead it gets updated manually with the function that performs the manual aggregation of the hourly data:

the manual aggregation of a day's data
sub conput eDay # ($dat eSt anp)
{

our $uTraffic;

ny $bytes = 0;

ny $rhFirst = $t Hourl y->findl dxBy($i dxHourl yByDay, day => $_[0]);
ny $rhEnd = $rhFirst->next Goupl dx($i dxHour | yByDayG oup) ;
for (my $rhi = $rhFirst;

1 $rhi ->same($rhEnd); $rhi = $rhi->next!dx($i dxHourl yByDay)) {

228

Time processing

}

}

$bytes += $rhi ->get Row() - >get (" byt es");

$uTraffic->makeHashCal | ($t Dai | y->get | nput Label (), "OP_I NSERT",

)

day => $_[0],
bytes => $bytes,

This logic doesn't check whether any data for that day existed. If none did, it would just produce a row with traffic of 0
bytes anyway. Thisis different from the normal aggregation but here may actually be desirable: it shows for sure that yes,
the aggregation for that day really did happen.

whi | e(<STDI N>) {

}

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "new') {

}
}
}
}

ny $rowop = $t Packet s->get | nput Label () - >makeRowopAr r ay(@lat a) ;

update the current notion of time (sinplistic)

$current Hour = &hour St anp($r owop- >get Row() - >get ("time"));

ny $l astDay = $current Day;

$current Day = &dateStanp($current Hour);

if (defined($rowop->getRow)->get("local _ip"))) {
$uTraffic->call ($rowop);

&f I ushd dPackets(); # flush the packets

if (defined $l astDay && $l ast Day ne $current Day) ({
&conput eDay($l ast Day); # manual aggregation

}

$uTraffic->drainFrane(); # just in case, for conpleteness

elsif ($type eq "dunpPackets") ({

&JunpTabl e($t Packet s) ;

elsif ($type eq "dunmpHourly") {

&dunmpTabl e($t Hour | y) ;

elsif ($type eq "dunpDaily") {

&dunmpTabl e($t Dai l y) ;

The main loop gets extended with the day-keeping logic and with the extra command to dump the daily data. It now
maintains the current day, and after the packet computation is done, looks, whether the day has changed. If it did, it calls
the manual aggregation of the last day.

And hereis an example of its work:

new, OP_| NSERT, 1330886011000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 100
t Packets. out OP_I NSERT ti me="1330886011000000" | ocal _ip="1.2.3.4"

renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="100"

t Hourly. out OP_I NSERT tinme="1330884000000000" day="20120304"

local ip="1.2.3.4" rempte_ip="5.6.7.8" bytes="100"

new, OP_| NSERT, 1330886012000000, 1. 2. 3.4, 5. 6. 7.8, 2000, 80, 50
t Hourly. out OP_DELETE tinme="1330884000000000" day="20120304"

local ip="1.2.3.4" renote_ip="5.6.7.8" bytes="100"

t Packets. out OP_I NSERT ti me="1330886012000000" | ocal _ip="1.2.3.4"

renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="50"

t Hourly. out OP_I NSERT tinme="1330884000000000" day="20120304"

local ip="1.2.3.4" rempte_ip="5.6.7.8" bytes="150"

new, OP_| NSERT, 1330889811000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 300
t Packets. out OP_I NSERT ti me="1330889811000000" | ocal _i p="1.2.3.4"

renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="300"

t Hourly. out OP_I NSERT tinme="1330887600000000" day="20120304"

Periodic updates 229

local ip="1.2.3.4" renpte_ip="5.6.7.8" bytes="300"
So far al the 3 packets are for the same day, and nothing new has happened.

new, OP_I NSERT, 1330972411000000, 1. 2.3.5,5.6. 7.9, 3000, 80, 200
t Packets. out OP_I NSERT tinme="1330972411000000" |ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" |ocal _port="3000" renote_port="80" bytes="200"
t Hourly. out OP_I NSERT tine="1330970400000000" day="20120305"
local _ip="1.2.3.5" rempte_i p="5.6.7.9" bytes="200"
t Packets. out OP_DELETE tinme="1330886011000000" |ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="100"
t Packets. out OP_DELETE tinme="1330886012000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="50"
t Packets. out OP_DELETE tinme="1330889811000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="300"
tDaily. out OP_I NSERT day="20120304" byt es="450"

When a packet for the next day arrives, it has three effects:
1. inserts the packet data as usual,
2. findsthat the previous packet data is obsolete and flushes it (without upsetting the hourly summaries), and
3. findsthat the day has changed and performs the manual aggregation of last day's hourly datainto daily.
new, OP_| NSERT, 1331058811000000
t Packets. out OP_DELETE tinme="1330972411000000" | ocal _i p="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="200"
t Dai | y. out OP_I NSERT day="20120305" bytes="200"

A time update for the yet next day flushes out the previous day's detailed packets and again builds the daily summary of
that day.

new, OP_| NSERT, 1331145211000000
tDai | y. out OP_| NSERT day="20120306" bytes="0"

Y et another day's time roll now has no old data to delete (since none arrived in the previous day) but still produces the
daily summary of O bytes.

dunpDai | y

day="20120305" byt es="200"

day="20120304" byt es="450"

day="20120306" byt es="0"

This shows the eventual contents of the daily summaries. The order of the rows is fairly random, because of the hashed
index. Note that the hourly summariesweren't flushed either, they are all till theretoo. If you want them eventually deleted
after some time, you would need to provide more of the manual logic for that.

13.3. The general issues of time processing

After acoupleof examples, it'stimeto do some generalizations. What these exampl es did manually, with the dataexpiration
by time, the more mature CEP systems do internally, using the statements for the time-based work.

Which isn't always better though. The typical issues are with:
« fast replay of data,
* order of execution,

* synchronization between modules.

230 Time processing

The problem with the fast replay is that those time based-statements use the real time and not the timestamps from the
incoming rows. Sure, in Coral8 you can use the incoming row timestamps but they still are expected to have the time
generally synchronized with thelocal clock (they are an attempt to solve the inter-modul e synchronization problem, not fast
replay). Y ou can't run them fast. And considering the Coral 8 fashion of dropping the datawhen the input buffer overflows,
you don't want to feed the dataiinto it too fast to start with. In the Aleri system you can accelerate thetime but it's by afixed
factor. You can run the logical time there say 10 times faster and feed the data 10 times faster but there are no timestamps
in the input rows, and you simply can't feed the data precisely enough to reproduce the exact timing. And 10 times faster
is not the same thing as just as fast as possible. | don't know for sure what the StreamBase does, it seems to have the time
acceleration by afixed rate too. Esper apparently allows the full control over timing, but | don't know much about it.

Y our typical problem with fast replay in Coral8/CCL isthis: you create atime limited window
create window ... keep 3 hours;

and then feed the data for a couple of daysin say 20 minutes. Provided that you don't feed it too fast and none of it gets
dropped, all of the data ends up in the window and none of it expires, since the window goes by the physical time, and the
physical time was only 20 minutes. Thefirst issue isthat you may not have enough memory to store the data for two days,
and everything would run out of memory and crash. The second issueisthat if you want to do some time-based aggregation
relying on the window expiration, you're out of luck.

Why would you want to feed the data so fast in the first place? Two reasons:

1. Testing. When you test your time-based logic, you don't want your unit test to take 3 hours, let alone multiple days. You
also want your unit tests to be fully repeatable, without any fuzz.

2. Staterestoration after a planned shutdown or crash. No matter what everyone says, the built-in persistence featureswork
right only for asmall subset of the simple models. Getting the persistence work for the more complex modelsisdifficult,
and for al | know nobody has bothered to get it working right. The best approach in reality isto preserve a subset of the
state, and get the rest of it by replaying the recent input data after restart. The faster you re-feed the data, the faster your
model comes back online. (Incidentally, that's what Aleri does with the “persistent source streams’, only losing al the
timing information of the rows and having the same above-mentioned issue as CCL).

Next issue, the execution order. The last example was relying on $cur r ent Hour being updated before f | ushQ d-

Packet s() runs. Otherwise the deletions would propagate through the aggregator where they should not. In a system
like Aleri with each element running in its own thread there is no way to ensure any particular timing between the threads.
In a system with single-threaded logic, like Coral8/Sybase or StreamBase, there is a way. But getting the order right is
tricky. It depends on what the compiler and scheduler decide, and may require afew attempts to get the order right. Well,
technically, Aleri can control the time too: you canrunin artificial time, setting and stopping it. So you can stop the time,
set to record timestamp, feed the record, wait for processing to complete, advance time, wait for any time-based processing
to complete, and so on. I'm not sureif it made to Sybase R5, but it definitely worked on Aleri. However there was no tool
that did it for you easily, and also all these synchronous calls present a pretty high overhead.

The procedural execution makes things much more straightforward.

Now, the synchronization between modul es. When the data i s passed between multiple threads or processes, thereisaways
ajigger in the way the data goes through the inter-process communications and even more so through the network. Relying
on the timing of the data after it arrivesis usually abad ideaif you want to get any repeatability and precision. Instead the
data has to be timestamped by the sender and then these timestamps used by the receiver instead of the real time.

And Coral8 allows you to do so. But what if there is no data coming? What do you do with the time-based processing?
The Coral8 approach is to allow some delay and then proceed at the rate of the local clock. Note that the logical time
is not exactly the same as the local clock, it generally gets behind the local clock by no more than the delay amount, or
might go faster if the sender's clock goes faster. The question is, what delay amount do you choose? If you make it too
short, the small hiccups in the data flow throw the timing off, the local clock runs ahead, and then the incoming data gets
thrown away because it'stoo old. If you makeit too long, you potentially add alarge amount of latency. Asit turns out, no
reasonable amount of delay works well with Coral8. To get things working at least sort of reliably, you need horrendous

The general issues of time processing 231

delays, on the order of 10 seconds or more. Even then the sender may get hit by along-running request and the connection
would go haywire anyway.

The only reliable solution is to drive the time completely by the sender. Even if there is no datato send, it must still send
the periodic time updates, and the receiver must use the incoming timestamps for its time-based processing. Sending one
or even ten time-update packets per second is not awhole lot of overhead, and sure works much better than the 10-second
delays. And along the way it gives the perfect repeatability and fast replay for the unit testing. So unless your CEP system
can be controlled in this way, getting any decent distributed timing control requires doing it manually. The reality is that
Aleri can't, Coral8 can't, the Sybase R4/R5 descended from them can't, and | could not find anything related to the time
control in the StreamBase documentation, so my guessisthat it can't either.

And if you have to control the time-based processing manually, doing it in the procedural way is at |east easier.

An interesting side subject is the relation of the logical time to the real time. If the input data arrives faster than the CEP
model can processit, thelogical time will be getting behind the real time. Or if the dataisfed at the artificially accelerated
rate, thelogical timewill be getting ahead of thereal time. There could even beacombination thereof: making the"real" time
also artificial (driven by the sender) and artificially make the data get behind it for the testing purposes. The getting-behind
can be detected and used to change the algorithm. For example, if we aggregate the traffic data in multiple stages, to the
hour, to the day and to the month, the whole chain does not have to be updated on every packet Just update the first level
on every packet, and then propagate further when the traffic burst subsides and gives the model a breather.

So far the magjor CEP systems don't seem to have awhole lot of direct support for it. There are ways to reduce the load by
reducing the update frequency to afixed period (like the OQUTPUT EVERY statement in CCL, or periodic subscription in
Aleri), but not much of theload-based kind. If the system provideswaysto get both thereal time and logical time of therow,
the logic can be implemented manually. But the optimizations of the time-reading, likein Cora8, might make it unstable.

Theway todoitin Tricepsis by handling it in the Perl (or C++) code of the main event loop. When it has no data to read,
it can create an “idle” row that would push through the results as a more efficient batch.

232 Time processing

Chapter 14. The other templates and
solutions

14.1. The dreaded diamond

The “diamond” is a particular topology of the data flow, when the computation separates based on some condition and
then merges again. Likein Figure 14.1 . It is also known as “fork-join” (the “join” here has nothing to do with the SQL
join, it just means that the arrows merge to the same block).

Figure 14.1. The diamond topology.

This topology is a known source of two problems. The first problem is about the execution order. To make things easier
to see, let's consider a simple example. Suppose the rows come into the block A with the schema:

key => string,
val ue => int 32,

And come out of the blocks B and C into D with schema

key => string,

233

val ue => int 32,
negative => int32,

With the logic in the blocks being:

A

if value < 0 then Belse C
B:

negative = 1
C.

negative = 0

Yes, thisis a very dumb example that can usually be handled by a conditional expression in a single block. But that's to
keep it small and simple. A real example would often include some SQL joins, with different joins done on condition.

Suppose A then gets the input, in CSV form:

| NSERT, key1, 10
DELETE, key1, 10
| NSERT, key1, 20
DELETE, key1, 20
| NSERT, key1, - 1

Wheat arrives at D should be

| NSERT, key1, 10, 0
DELETE, key1, 10, 0
| NSERT, key1, 20, 0
DELETE, key1, 20, 0
| NSERT, key1, -1, 1

And with the first four rows this is not a problem: they follow the same path and are queued sequentially, so the order is
preserved. But the last row follows a different path. And the last two rows logically represent a single update and would
likely arrive closely together. Thelast row might happen to overtake the one beforeit, and D would see the incorrect result:

I NSERT, key1, 10, 0
DELETE, key1, 10,0
I NSERT, key1, 20,0
I NSERT, key1, -1, 1
DELETE, key1, 20,0

If all these input rows arrive closely one after another, the last row might overtake even more of them and produce an
even more disturbing result like

I NSERT, key1, -1, 1
| NSERT, key1, 10,0
DELETE, key1, 10,0
I NSERT, key1, 20,0
DELETE, key1, 20,0

Such misorderings may also happen between the rows with different keys. Those are usually less of a problem, because
usually if D keeps a table, the rows with different keys may be updated in any order without losing the meaning. But in
caseif D keeps a FIFO index (say, for awindow based on arow count), and the two keys fall into the same FIFO bucket,
their misordering would also affect the logic.

The reasons for this can be subdivided further into two classes:

* asynchronous execution,

« incorrect scheduling in the synchronous execution.

234 The other templates and solutions

If each block executes asynchronously in its own thread, there is no way to predict, in which order they will actually
execute. |If some datais sent to B and C at about the same time, it becomes a race between them. One of the paths might
also be longer than the other, making one alternative always win the race. This kind of problemsis fairly common for the
Aleri system that is highly multithreaded. But thisis the problem of absolutely any CEP engine if you split the execution
by multiple threads or processes.

But the single-threaded execution is not necessarily a cure either. Then the order of execution is up to the scheduler. And
if the scheduler gets all these rows close together, and then decides to process all the input of A, then all the input of B,
of C and of D, then D will receive the rowsin the order:

| NSERT, keyl,-1,1
| NSERT, key1, 10, 0
DELETE, key1, 10,0
| NSERT, key1, 20,0
DELETE, key1, 20,0

Whichistypical for, say, Cora8if all theinput rows arrive in asingle bundle (see also the Section 7.6: “No bundling” (p.
45)).

The multithreaded case in Triceps will be discussed separately in Section 16.10: “ The threaded dreaded diamond and data
reordering” (p. 325) .

When the single-threaded scheduling is concerned, Triceps provides two answers.

First, the conditional logic can often be expressed procedurally:

if ($a->get("value") < 0) {

D($rt D- >makeRowHash($a- >t oHash(), negative => 1));
} else {

D($rt D- >mekeRowHash($a- >t oHash(), negative => 0));
}

The procedural if-else logic can easily handle not only the simple expressions but things like look-ups and modifications
in the tables.

Second, if the logic is broken into the separate labels, the label call semantics provides the same ordering as well:

$l bA = $unit->makelLabel ($rtA, "A", undef, sub {
ny $rop = $_[1];
ny $op = $rop->get Opcode(); ny $a = $rop->get Row();
if ($a->get("value") < 0) {
$uni t - >cal | ($I bB- >nakeRowop($op, $a));
} else {
$uni t - >cal | ($l bC- >makeRowop($op, $a));
}
1)

$l bB = $unit->makelLabel ($rtA, "B", undef, sub {

ny $rop = $_[1];

ny $op = $rop->get Opcode(); ny $a = $rop->get Row();

$uni t - >makeHashCal | ($l bD, $op, $a->toHash(), negative => 1);
1

$l bC = $unit->makelLabel ($rtA, "C', undef, sub {

ny $rop = $_[1];

ny $op = $rop->get Opcode(); ny $a = $rop->get Row();

$uni t - >makeHashCal | ($l bD, $op, $a->toHash(), negative => 0);
1)

The dreaded diamond 235

When the label A calls the label B or C, which calls the label D, A does not get to see its next input row until the whole
chain of callsto D and beyond completes. B and C may be replaced with the label chains of arbitrary complexity, including
loops, without disturbing the logic.

The second problem with the diamond topology happens when the blocks B and C keep the state, and the input data gets
updated by simply re-sending a record with the same key. Thiskind of updatesistypical for the systems that do not have
the concept of opcodes.

Consider a CCL example (approximate, since | can't test it) that gets the reports about borrowing and loaning securities,
using the sign of the quantity to differentiate between borrows (-) and loans (+). It then sums up the borrows and loans

Separately:

create schema s_A (
idinteger,

synbol string,
quantity | ong

)

create input streami_A schema s_A

create schema s_D (

synbol string,

borrowed bool ean, // flag: |oaned or borrowed
quantity | ong

)
/1 aggregated data

create public wi ndow w D schema s_D
keep | ast per synbol, borrowed;

/1 collection of borrows

create public window w B schema s_A keep | ast per id;
/1 collection of |oans

create public window w_ C schema s_A keep | ast per id;

insert when quantity <0
then w_B
else wC

select * fromi_A

/1 borrows aggregation
insert into wD
sel ect

synbol ,

true,

sun(quantity)
group by synbol
fromw_B;

/1 1 oans aggregation
insert into wD
sel ect
synbol ,
fal se,
sun(quantity)
group by synbol
fromw_C,

It works OK until arow with the same id gets updated to a different sign of quantity:
1, AAA, 100

1, AAA, - 100

236 The other templates and solutions

If the quantity kept the same sign, the new row would simply replacethe old oneinw_B or w_C, and the aggregation result
would be right again. But when the sign changes, the new row goes into a different direction than the previous one. Now
it ends up with both w_B and w_C having rows with the same id: one old and one new!

Inthiscasereally theproblemisat the“fork” part of the“diamond”, the merging part of it isjust along for theride, carrying
theincorrect results.

This problem does not happen in the systems that have both inserts and deletes. Then the data sequence becomes
| NSERT, 1, AAA 100

DELETE, 1, AAA, 100
I NSERT, 1, AAA, - 100

The DELETE goes along the same branch as the first insert and undoes its effect, then the second INSERT goes into the
other branch.

Since Triceps has both INSERT and DELETE opcodes, it's immune to this problem, as long as the input data has the
correct DELETESiniit.

If you wonder, the CCL example can be fixed too but in a more round-about way, by adding a couple of statements before
the “insert-when” statement:

on w_A
delete fromw_B
where w A id = wB.id;

on w_A
delete fromw.C
where w A id = wCid;

This generates the matching DELETES. Of course, if you want, you can use this way with Triceps too.

14.2. Collapsed updates

First, anote: the collapse described here has nothing to do with the collapsing of the aggregation groups. It's just the same
word reused for a different purpose.

Sometimes the exact sequence of how arow at a particular key was updated does not matter, the only interesting part is
the end result. Like the OUTPUT EVERY statement in CCL or the pulsed subscription in Aleri. It doesn't have to be time-
driven either: if the data comesin as batches, it makes sense to collapse the modifications from the whole batch into one,
and send it at the end of the batch.

To do thisin Triceps, |'ve made atemplate. Here is an example of its use with interspersed commentary:

our $rtData = Triceps:: RowType- >new

nostly copied fromthe traffic aggregati on exanple
local _ip => "string",

renote_ip => "string",

bytes => "int64",

);

The meaning of therowsis not particularly important for this example. It just usesapair of the | P addresses as the collapse
key. The collapse absolutely needs a primary key, sinceit hasto track and collapse multiple updates to the same row.

ny $unit = Triceps::Unit->new("unit");
ny $col |l apse = Triceps:: Col | apse->new(

unit => $unit,
name => "col | apse",

Collapsed updates 237

data => |
name => "idata",
rowlype => $rt Dat a,
key => ["local _ip", "renote_ip"],
1,
)

Most of the options are self-explanatory. The dataset is defined with nested options to make the API extensible, to allow
multiple datasets to be defined in the future. But at the moment only one is allowed. A dataset collapses the data at one
label: an input label and an output label get defined for it, just as for the table. The data arrives at the input label, gets
collapsed by the primary key, and then staysin the Collapse until the flush. When the Collapse gets flushed, the datais sent
out of its output label. After the flush, the Collapse has no datain it, and starts collecting the updates again from scratch.
Thelabels gets named by connecting the names of the Collapse element, of the dataset, and “in” or “out”. For this Collapse,
the label names will be “collapse.idata.in” and “ collapse.idata.out”.

Note that the dataset options are specified in a referenced array, not a hash! If you try to use a hash, it will fail. When
specifying the dataset options, put the “name” first. It's used in the error messages about any issues in the dataset, and the
code really expects the nameto go first.

Like with the other shown templates, if something goes wrong, Collapse will confess.
ny $I bPrint = makePrintLabel ("print", $collapse->get QutputLabel ("idata"));

The print label gets connected to the Collapse's output 1abel. The method to get the collapse's output label is very much
like table's. Only it gets the dataset name as an argument.

sub mai nl oop($$$) # ($unit, $datal abel, $coll apse)
{

my $unit = shift;

ny $datal abel = shift;

my $coll apse = shift;

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a cormmand, then string opcode
my $type = shift @lata;

if ($type eq "data") {
ny $rowop = $dat al abel - >makeRowopAr r ay(@lat a) ;
$uni t->cal | ($rowop) ;
$unit->drai nFrane(); # j
} elsif ($type eq "flush")
$col | apse->fl ush();

ust in case, for conpleteness

s
{
}

}
}

&mai nl oop($uni t, $col |l apse- >get | nput Label ($col | apse- >get Dat asets()), $coll apse);

There will be a second example, so I've placed the main loop into afunction. It worksin the same way asin the examples
before: extractsthe datafrom the CSV format and sendsit to alabel. Thefirst column contains the command: “data” sends
the data, and “flush” performs the flush from the Collapse. The flush marks the end of the batch. Here is an example of
arun, with the input lines shown as usual in bold:

data, OP_I NSERT, 1. 2. 3. 4,5.6.7. 8, 100

dat a, OP_I NSERT, 1. 2. 3. 4,6.7.8.9, 1000

dat a, OP_DELETE, 1. 2. 3.4, 6.7.8.9, 1000

flush

col | apse.idata.out OP_I NSERT | ocal _ip="1.2.3.4" remote_i p="5.6.7.8"
byt es="100"

The row for (1.2.3.4, 5.6.7.8) gets plainly inserted, and goes through on the flush. The row for (1.2.3.4, 6.7.8.9) getsfirst
inserted and then deleted, so by the flush time it becomes a no-operation.

238 The other templates and solutions

dat a, OP_DELETE, 1. 2.3.4,5.6.7.8, 100

dat a, OP_I NSERT, 1. 2. 3. 4,5.6.7.8, 200

data, OP_I NSERT, 1. 2. 3. 4, 6. 7. 8.9, 2000

flush

col | apse. i data.out OP_DELETE | ocal _ip="1.2.3.4" remote_i p="5.6.7.8"
byt es="100"

col | apse.idata.out OP_I NSERT | ocal _ip="1.2.3.4" remote_i p="5.6.7.8"
byt es="200"

col | apse.idata.out OP_I NSERT | ocal _ip="1.2.3.4" renote_i p="6.7.8.9"
byt es="2000"

Theoriginal row for (1.2.3.4, 5.6.7.8) gets modified, and the modification goes through. The new row for (1.2.3.4, 6.7.8.9)
gets inserted now, and also goes through.

dat a, OP_DELETE, 1. 2. 3. 4,6.7.8.9, 2000

dat a, OP_I NSERT, 1. 2. 3. 4, 6. 7. 8.9, 3000

dat a, OP_DELETE, 1. 2. 3. 4,6.7.8.9, 3000

data, OP_I NSERT, 1. 2. 3. 4, 6. 7. 8.9, 4000

dat a, OP_DELETE, 1. 2. 3. 4,6.7.8.9, 4000

flush

col | apse. i data.out OP_DELETE local _ip="1.2.3.4" renote_i p="6.7.8.9"

byt es="2000"

Therow for (1.2.3.4, 6.7.8.9) now gets modified twice, and after that deleted. After collapse it becomes the deletion of the
original row, the one that was inserted before the previous flush.

The Collapse also alows to specify the row type and the input connection for a dataset in a different way:
ny $I bl nput = $unit->makeDummyLabel ($rtData, "Iblnput");

my $col |l apse = Triceps:: Col | apse- >new(
name => "col | apse",
data => [
nane => "idata",
fromLabel => $I bl nput,
key => ["local _ip", "remote_ip"],
I
)

&mai nl oop($unit, $Iblnput, $collapse);

Normally $I bl nput would be not adummy label but the output Iabel of some element. The dataset option “fromLabel”
tellsthat the dataset input will be coming from that label. So the Collapse can automatically both copy its row type for the
dataset, and also chain the dataset's input label to that label. And also allowing to skip the option “unit” at the main level.
It's a pure convenience, allowing to skip the manual steps. In the future a Collapse dataset should probably take a whole
list of source labelsand chainitself to all of them, but for now only one.

This example produces exactly the same output as the previous one, so thereisno usein copying it again.
Another item that hasn't been shown yet, you can get the list of dataset names (well, currently only one name):
@anes = $col | apse- >get Dat aset s();

The Collapse implementation is reasonably small, and is another worthy example to show. It's a common template, with
no code generation whatsoever, just a combination of ready components. As with SimpleAggregator, the current Collapse
is quite simple and will grow more features over time, so I've copied the original smple versionintot / xCol | apse. t
to stay there unchanged.

The most notable thing about Collapse isthat it took just about an hour to write the first version of it and another three or
s0 hoursto test it. Which is alot less than the similar codein the Aleri or Coral8 code base took. The reason for thisis that

Collapsed updates 239

Triceps provides the fairly flexible base data structures that can be combined easily directly in a scripting language. There
isno need to re-do alot from scratch every time, just take something and add alittle bit on top.

So hereit is, with the interspersed commentary.

sub new # ($cl ass, $optNane => $optValue, ...)
{

ny $class = shift;

ny $self = {};

&Triceps:: Opt:: parse($class, $self, {
unit => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Unit") }],
name => [undef, \&Triceps:: Opt::ck_nandatory],
data => [undef, sub { &Triceps:: Opt::ck_nandatory(@); &Triceps::Opt::ck_ref(@,
"ARRAY") }],
@)

Keeps the nanmes of the datasets in the order they have been defined
(since the hash | oses the order).
$sel f ->{dset nanes} = [];

parse the data el ement
ny %lat a_unparsed = @ $sel f->{data}};
ny $dataset = {};
&Triceps:: Opt::parse("$class data set (" . ($data_unparsed{nanme} or 'UNKNOW) . ")",
$dat aset, {
name => [undef, \&Triceps:: Opt::ck_nandatory],
key => [undef, sub { &Triceps:: Opt::ck_mandatory(@); &Triceps::Opt::ck_ref(@,
"ARRAY", ") }],
rowType => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::RowType"); }],
fromLabel => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Label"); }]
}, @$self->{data}});

)

The options parsing goes as usual. The option “data” is parsed again for the options inside it, and those are placed into
the hash %%dat aset .

save the dataset for the future
push @ $sel f->{dsetnanes}}, $dataset->{nane};
$sel f->{dat aset s} {$dat aset - >{ nane}} = $dat aset;
check the options
&Tri ceps: : Opt:: handl eUni t TypeLabel ("Triceps:: Col | apse data set (". $dataset->{nane}
"y
"unit at the main level", \$self->{unit},
"rowType", \$dataset->{rowType},
"fronlLabel ", \$dataset->{fronlLabel});
my $| bFrom = $dat aset - >{fronLabel };

If “fromLabel” is used, the row type and possbly unit ae found from it by
Triceps:: Opt:: handl eUni t TypeLabel (). Orif theunit was specified explicitly, it gets checked for consistency
with the label's unit. See Section 10.5: “Template options’ (p. 124) for more detail. The early version of Collapseint /
xCol | apse. t actually pre-dates Tri ceps: : Opt : : handl eUni t TypelLabel (), and there the similar functional-
ity isdone manually.

create the tables

$dat aset->{tt} = Triceps:: Tabl eType- >new($dat aset - >{r owType})
- >addSubl ndex("pri mary",

Triceps:: | ndexType- >newHashed(key => $dat aset - >{ key})

)

Triceps::w apfess
"$nmynane: Col | apse table type creation error for dataset
sub { $dataset->{tt}->initialize(); };

$dat aset - >{ nane} . ot

240 The other templates and solutions

Triceps::w apfess

"$nmynane: Col | apse internal error: insert table creation for dataset '" . $dataset-
>{nane} . "':",

sub { $dataset->{tblnsert} = $sel f->{unit}->nmakeTabl e($dataset->{tt}, $self->{nane}
$dat aset->{nane} . ".tblnsert"); };

Triceps::w apfess

"$nmynane: Col | apse internal error: delete table creation for dataset '" . $dataset-
>{nane} . "':",

sub { $dataset->{tbDel ete} = $self->{unit}->makeTabl e($dataset->{tt}, $self->{nanme}
$dat aset->{nane} . ".tbDelete"); };

The state is kept in two tables. The reason for their existence is that after collapsing, the Collapse may send for each key
one of:

» asingle INSERT rowop, if the row was not there before and became inserted,

» aDELETE rowop if the row was there before and then became deleted,

» aDELETE followed by an INSERT if the row was there but then changed its value,

« or nothing if the row was not there before, and then was inserted and deleted, or if there was no change to the row.

Accordingly, this state is kept in two tables: one contains the DELETE part, another the INSERT part for each key, and
either part may be empty (or both, if the row at that key has not been changed). After each flush both tables become empty,
and then start collecting the modifications again.

create the | abels
Tri ceps: :wrapfess

"$nynane: Collapse internal error: input |abel creation for dataset '" . $dataset-
>{nane} . "':",
sub { $dataset->{lbln} = $self->{unit}->makelLabel ($dataset->{rowType}, $self->{nane}
$dat aset->{nanme} . ".in",

undef, \& handl el nput, $self, $dataset); };

Tri ceps: :wrapfess

"$nynane: Col |l apse internal error: output |abel creation for dataset '" . $dataset-
>{nane} . "':",

sub { $dataset->{IbQut} = $self->{unit}->nmakeDummyLabel ($dat aset->{rowType}, $self-
>{nane} . "." . S$dataset->{nane} . ".out"); };

The input and output labels get created. The input label has the function with the processing logic set as its handler. The
output label isjust adummy. Note that the tables don't get connected anywhere, they are just used as storage, without any
immediate reactions to their modifications.

chain the input label, if any
if (defined $l bFrom ({
Triceps::w apfess
"$mynane: Coll apse internal error: input |abel chaining for dataset '" . $dataset-
>(nane} . "' to '" . $lbFrom>getName() . "' failed:",
sub { $I bFrom >chai n($dataset->{1bin}); };
del ete $dataset->{fronmlLabel}; # no need to keep the reference any nore, avoid a
reference cycle

}

And if the “fromLabel” was used, the Collapse gets connected to it. After that there is no good reason to keep a separate
reference to that label, especially considering that it creates areference loop that would not be cleaned until the input 1abel
get cleaned by the unit. So it gets deleted early instead.

bl ess $sel f, $cl ass;

Collapsed updates 241

return $sel f;

}

The final blessing is boilerplate. The constructor creates the data structures but doesn't implement any logic. The logic
goes next:

(protected)
handl e one incomi ng row on a dataset's input |abel
sub _handl el nput # ($l abel, $rop, $self, $dataset)
{
ny $label = shift;
nmy $rop = shift;
ny $self = shift;
ny $dataset = shift;

if ($rop->isinsert()) {
Sinply add to the insert table: the effect is the same, independently of
whether the row was previously deleted or not. This also handles correctly
multiple inserts without a delete between them even though this kind of
input is not really expected.
$dat aset - >{t bl nsert}->i nsert ($r op- >get Row()) ;

The Collapse object knows nothing about the data that went through it before. After each flush it starts again from scratch.
It expects that the stream of rows is self-consistent, and makes the conclusions about the previous data based on the new
data it sees. An INSERT rowop may mean one of two things: either there was no previous record with this key, or there
was a previous record with this key and then it got deleted. The Delete table can be used to differentiate between these
situations: if there was arow that was then deleted, the Delete table would contain that row. But for the INSERT it doesn't
matter: in either caseit just inserts the new row into the Insert table. If there was no such row before, it would be the new
INSERT. If there was such arow before, it would be an INSERT following a DELETE.

} elsif($rop->isDelete()) {
If there was a rowin the insert table, delete that row (undoi ng the previous
insert).
Oherwise it neans that there was no previous insert seen in this round, so this
must be a
deletion of a rowinserted in the previous round, so insert it into the delete
t abl e.
if (! $dataset->{tblnsert}->del et eRow $r op->get Row())) {
$dat aset - >{t bDel et e} - >i nsert ($rop- >get Row)) ;
}
}
}

The DELETE caseis moreinteresting. If we seeaDELETE rowop, thismeansthat either there wasan INSERT sent before
the last flush and now that INSERT becomes undone, or that there was an INSERT after the flush, which also becomes
undone. The actions for these cases are different: if the INSERT was before the flush, this row should go into the Delete
table, and eventually propagate as a DELETE during the next flush. If the last INSERT was after the flush, then its row
would be stored in the Insert table, and now we just need to delete that row and pretend that it has never been.

That'swhat the logic does: first it triesto remove from the Insert table. If succeeded, then it wasan INSERT after the flush,
that became undone now, and there is nothing more to do. If there was no row to delete, this means that the INSERT must
have happened before the last flush, and we need to remember thisrow in the Delete table and passit on in the next flush.

Thislogicisnot resistant to the incorrect data sequences. If there ever aretwo DELETES for the same key in arow (which
should never happen in a correct sequence), the second DELETE will end up in the Delete table.

Unlatch and flush the collected data, then |atch again.
sub flush # ($sel f)

shift;
$sel f->{unit};

ny $self
ny $unit

242 The other templates and solutions

nmy $OP_I NSERT = &Tri ceps: : OP_|I NSERT;
ny $OP_DELETE = &Tri ceps: : OP_DELETE;
foreach ny $dataset (values % $sel f->{datasets}}) {

ny $tblns = $dataset->{tblnsert};
ny $tbDel = $dataset->{tbDel ete};
ny $l bQut = $dataset->{IbQut};

ny $next;

send the del etes always before the inserts

for (ny $rh = $tbDel ->begin(); !$rh->isNull(); $rh = $next) {
$next = $rh->next(); # advance the irerator before renoving
$t bDel - >r enove($rh);
$uni t - >cal | ($l bQut - >makeRowop($OP_DELETE, $rh->getRow()));

}

for (my $rh = $thlns->begin(); !$rh->isNull(); $rh = $next) {
$next = $rh->next(); # advance the irerator before renoving
$t bl ns- >renove($rh);
$uni t->cal | ($I bQut - >makeRowop($OP_I NSERT, $rh->get Row()));

}

}
}

The flushing is fairly straightforward: first it sends on all the DELETES, then all the INSERTS, clearing the tables along
the way. At first I've though of matching the DELETESs and INSERTSs together, sending them next to each other in case
if both are available for some key. It's not that difficult to do. But then I've realized that it doesn't matter and just did it
the simple way.

Get the input |abel of a dataset.
Confesses on error.
sub get I nput Label ($$) # ($self, $dsetnane)
{
ny ($self, $dsetnane) = @;
confess "Unknown dataset ' $dsetnane'"
unl ess exists $sel f->{dat aset s}{$dset nane};
return $sel f->{dat aset s}{$dset nane}{l bl n};

}

Get the output |abel of a dataset.
Confesses on error.
sub get Qut put Label (3) # ($self, $dsetnane)

{
ny ($self, $dsetnane) = @;
confess "Unknown dataset ' $dsetnane'"
unl ess exists $sel f->{dat aset s}{$dset nane};
return $sel f->{dat aset s}{$dset nane}{| bQut};

}

Get the lists of datasets (currently only one).
sub getDatasets($) # ($self)

ny $self = shift;
return @ $sel f->{dset nanes}};

}

The getter functions are fairly simple. The only catch isthat the code hasto check for exi st s beforeit reads the value of
$sel f - >{ dat aset s} {$dset nane} {| bQut } . Otherwise, if an incorrect $dset nane is used, the reading would
return an undef but along the way would create an unpopulated $sel f - >{ dat aset s} { $dset nanme} . Which would
then cause acrash when f | ush() triesto iterate through it and finds the dataset options missing.

That's it, Collapse in a nutshell! Another way to do the collapse will be shown in Section 15.2; “ Streaming functions by
example, another version of Collapse” (p. 251). And one more piece to it is shown in Section 15.8: “ Streaming functions
and template results’ (p. 268) .

Collapsed updates 243

14.3. Large deletes in small chunks

If you have worked with Coral8 and similar CEP systems, you should be familiar with the situation when you ask it to delete
amillion rows from the table and the model goes into self-contemplation for half an hour, not reacting to any requests. It
starts responding again only when the deletes are finished. That's because the execution is single-threaded, and deleting
amillion rows takestime.

Tricepsissucceptibleto the sameissue. So, how to avoid it? Even better, how to makethe deleteswork “inthe background”,
at alow priority, kicking in only when there is no other pending requests?

Thesolutionisdodoitinsmaller chunks. Deleteafew rows (say, athousand or so) then check if there areany other requests.
Keep processing these other request until the model becomes idle. Then continue with deleting the next chunk of rows.

Let's make asmall example of it. First, let's make atable.
our $uChunks = Triceps:: Unit->new("uChunks");

data is just some dunb easily-generated filler
our $rtData = Triceps:: RowType- >new

s => "string",

i =>"int32",
);

the data is auto-generated by a sequence
our $seq = O;

our $ttData = Triceps:: Tabl eType- >new($rt Dat a)
- >addSubl ndex("fifo", Triceps::I|ndexType->newFifo())

$ttData->initialize();
our $tData = $uChunks->makeTabl e($ttData, "tJoinl");
makePrint Label ("1 bPrint Data", $t Data->get Qut put Label ());

The data in the table is completely silly, just something to put in there. Even the index is a simple FIFO, just something
to keep the table together.

Next, the clearing logic.

notifications about the clearing
our $rtNote = Triceps:: RowType- >new(
text => "string",

)

rowops to run when the nodel is otherwise idle
our $trayldl e = $uChunks->makeTray();

our $l bReport Note = $uChunks- >makeDummyLabel ($rt Note, "Il bReport Note"
)
nmakePri nt Label ("1 bPrintNote", $l bReport Note);

code that clears the table in small chunks
our $l bC ear = $uChunks->makelLabel ($rtNote, "I bC ear", undef, sub {
$t Dat a->clear(2); # no nore than 2 rows del eted per run
if ($tData->size() > 0) {
$trayl dl e->push($_[0] - >adopt ($_[1]));
} else {
$uChunks- >makeHashCal | ($| bReport Not e, " OP_I NSERT",
text => "done clearing",
)
}

244 The other templates and solutions

1)

We want to get anotification when the clearing is done. This notification will be sent as arowop with row type $rt Not e
to the label $1 bRepor t Not e. Which then just gets printed, so that we can see it. In a production system it would be
sent back to the requestor.

The clearing isinitiated by sending a row (of the same type $r t Not e) to the label $| bCl ear . Which does the job and
then sends the notification of completion. In the real world not the whole table would probably be erased but only the old
data, from before a certain date, like was shown in the Section 12.11: “JoinTwo input event filtering” (p. 204) . Here for
simplicity all the data get wiped out.

But themethod cl ear () stops after the number of deleted rows reachesthe limit. Sinceit'sreal inconvenient to play with
a million rows, well play with just a few rows. And so the chunk size limit is also set smaller, to just two rows instead
of athousand. When the limit is reached and there still are rows left in the table, the code pushes the command row into
theidle tray for later rescheduling and returns. The adoption part is not strictly necessary, and this small example would
work fine without it. But it's a safeguard for the more complicated programs that may have the labels chained, with our
clearing label being just onelink in achain. If theincoming rowop getsrescheduled asis, the whole chain will get executed
again. which might not be desirable. Re-adopting it to our label will cause only our label (okay, and everything chained
from it) to be executed.

How would the rowopsin the idle tray get executed? In the real world, the main loop logic would be like this pseudocode:

while(1) {
if (idle tray is enpty)
timeout = infinity;
el se

timeout = O;
poll (file descriptors, timeout);
if (poll timed out)

run the idle tray;
el se

process the incom ng data;

}

The example from Section 7.9: “Main loop with a socket” (p. 54) can be extended to work like this. But it's hugely
inconvenient for atoy demonstration, getting the timing right would be amajor pain. So instead let's just add the command
“idle” to the main loop, to trigger the idle logic at will. The main loop of the exampleis:

whi | e(<STDI N>) {

chonp;
ny @ata = split(/,/); # starts with a command, then string opcode
ny $type = shift @lata;

if ($type eq "data") {
ny $count = shift @lata;
for (; $count > 0; S$count--) {

++$seq;

$uChunks- >nakeHashCal | ($t Dat a- >get | nput Label (), "OP_I NSERT",
s => ("data_" . $seq),
i => $seq,

)

}
} elsif ($type eq "dump") {
for (ny $rhit = $tData->begin(); !$rhit->isNull(); $rhit = $rhit->next()) {

print("dunp: ", $rhit->getRow()->printP(), "\n");
}
for my $r (S$trayldle->toArray()) {

print("when idle: ", $r->printP(), "\n");

}
} elsif ($type eq "clear") {
$uChunks- >makeHashCal | ($l bCl ear, "OP_| NSERT",

Large deletes in small chunks 245

text => "clear",
)

} elsif ($type eq "idle") {
$uChunks- >schedul e($trayl dl e);
$trayl dl e->cl ear();

}

$uChunks->drai nFrane(); # just in case, for conpleteness

}

The datais put into the table by the main loop in a silly way: When we send the command like “dat a, 3", the mail loop
will insert 3 new rows into the table. The contents is generated with sequential numbers, so the rows can be told apart. As
the table gets changed, the updates get printed by the label | bPr i nt Dat a.

The command “dump” dumps the contents of both the table and of theidle tray.

The command “clear” issues aclearing request by calling the label $1 bCl ear . Thefirst chunk gets cleared right away but
then the control returns back to the mainloop. If not al the datawere cleared, anidle rowop will be placed into theidletray.

The command “idle” that simulates the input idleness will then pick up that rowop from the idle tray and reschedul e it.

All the pieces have been put together, let's run the code. The commentary are interspersed, and as usual, the input lines
are shown in bold:

data, 1

tJoi nl. out OP_I NSERT s="data_ 1" i="1"
cl ear

tJoi nl. out OP_DELETE s="data_ 1" i="1"

| bReport Not e OP_I NSERT t ext ="done cl eari ng"

Thisis pretty much adry run: put in one row (less than the chunk size), see it deleted on clearing. And see the completion
reported afterwards.

data, 5

tJoi nl. out OP_I NSERT s="data_ 2" i
tJoi nl. out OP_I NSERT s="data_3" i
tJoi nl. out OP_I NSERT s="data_4" i
tJoi nl. out OP_I NSERT s="data_ 5" i
tJoi nl. out OP_I NSERT s="data_6" i

TR
QAR N

Add more data, which will be enough for three chunks.

cl ear
tJoinl.out OP_DELETE s="data_2" i="2"
tJoi nl. out OD_DELETE s="dat a_3" j="3"

Now the clearing does one chunk and stops, waiting for the idle condition.

dunp

dunmp: s="data_4" i="4"
dunp: s="data_5" i="5"
dunp: s="data_6" i="6"

when idle: | bCear OP_I NSERT text="clear"

Seewhat'sinside: the remaining 3 rows, and arow in the idle tray saying that the clearing isin progress.

ide
tJoi nl. out OP_DELETE s="data_4" i="4"
tJoi nl. out OP_DELETE s="data_5" i="5"

The model goes idle once more, one more chunk of two rows gets del eted.

data, 1

246 The other templates and solutions

tJoi nl. out OP_I NSERT s="data_ 7" i="7"

dunp
dunmp: s="data_6" i="6"
dunmp: s="data_7" i="7"

when idle: | bCear OP_INSERT text="clear"

What will happen if we add more data in between the chunks of clearing? Let's see, let's add one more row. It shows up
in the table as usual.

ide

tJoi nl. out OP_DELETE s="data_6" i="6"

tJoi nl. out OP_DELETE s="data_ 7" i="7"

| bReport Not e OP_I NSERT t ext="done cl eari ng"
dunp

ide

On the next idle condition the clearing picks up whatever was in the table for the next chunk. Since there were only two
rows left, it's the last chunk, and the clearing reports a successful completion. And a dump shows that there is nothing left
in the table nor in the idle tray. The next idle condition does nothing, because the idle tray is empty.

Thedeletion could a so beinterrupted and cancelled, by removing therow from theidletray. That would involve converting
the tray to an array, finding and deleting the right rowop, and converting the array back into the tray. Overall it's fairly
straightforward. The search in the array is linear but there should not be that many idle requests, so it should be quick
enough.

The delete-by-chunks logic can be made into atemplate, just I'm not sure yet what is the best way to do it. It would have
to have alot of configurable parts.

On another subject, scheduling the thingsto be done onidle adds an element of unpredictability to themodel. It'simpossible
to predict the exact timing of the incoming requests, and the idle work may get inserted between any of them. Presumably
it's OK because the data being deleted should not be participating in any logic at thistime any more. For repeatability in the
unit tests, make the chunk size adjustable and adjust it to asize larger than the biggest amount of data used in the unit tests.

A similar logic can also be used in querying the data. But it's more difficult. For deletion the continuation is easy: just
take the first row in the index, and it will be the place to continue (because the index is ordered correctly, and because
the previous rows are getting deleted). For querying you would have to remember the next row handle and continue from
it. Which is OK if it can not get deleted in the meantime. But if it can get deleted, you'll have to keep track of that too,
and advance to the next row handle when this happens. And if you want to receive a full snapshot with the following
subscription to al updates, you'd have to check whether the modified rows are before or after the marked handle, and pass
them through if they are before it, letting the user see the updates to the data already received. And since the datais being
sent to the user, filling up the output buffer and stopping would stop the whole model too, and not restart until the user reads
the buffered data. So there hasto be aflow control logic that would stop the query when output buffer fills up, return to the
normal operation, and then rescheduletheidlejob for the query only when the output buffer drainsdown. I'vekind of started
on doing an example of the chunked query too, but then because of all these complications decided to leaveit for later.

Large deletes in small chunks 247

248

Chapter 15. Streaming functions

15.1. Introduction to streaming functions

The streaming functions are a cool and advanced concept. I've never seen it anywhere before, and for all | know | have
invented it.

First let'slook at the differences between the common functions and macros (or templates and such), shownin Figure 15.1.

Template/macro

Function call invocation

Y<

Figure 15.1. The difference between the function and macro calls.

What happens during a function call? Some code (marked with the light bluish color) is happily zooming aong when it
decides to call afunction. It prepares some arguments and jumps to the function code (reddish). The function executes,
computes its result and jumps back to the point right after it has been called from. Then the original code continues from
there (the dlightly darker bluish color).

What happens during amacro (or template) invocation? It starts with some code zooming along in the same way, however
when the macro call time comes, it prepares the arguments and then does nothing. It gets away with it because the compiler
has done the work: it has placed the macro code right where it's called, so there is no need for jumps. After the macro is
done, again it does nothing: the compiler has placed the next code to execute right after it, so it just continues on its way.

So far it's pretty equivalent. An interesting difference happens when the function or macro is called from more than one
place. With a macro, another copy of the macro is created, inserted between its call and return points. That's why in the
figure the macro is shown twice. But with the function, the same function code is executed every time, and then returns
back to the caller. That's why in the figure there are two function callers with their paths through the same function. But
how does the function know, where should it jump on return? The caller tells it by pushing the return address onto the
stack. When the function is done, it pops this address from the stack and jumps there.

249

Still, it looks all the same. A macro call is a bit more efficient, except when a large complex macro is called from many
places, then it becomes more efficient as a function. However there is another difference if the function or macro holds
some context (say, a static variable): each invocation of the macro will get its own context but all the function calls will
share the same context. The only way to share the context with a macro is to pass some global context as its argument (or
you can use a separately defined global variable if you're willing to dispense with some strict modularity).

Now let's switch to the CEP world. The Sybase or StreamBase modules are essentially macros, and so are the Triceps
templates. When such a macro gets instantiated, a whole new copy of it gets created with its tables/windows and streams/
labels. Itsinput and output streams/labels get al connected in afixed way. The limitation is that if the macro contains any
tables, each instantiation gets another copy of them. Well, in Triceps you can use atable as an argument to atemplate. In
the other systems | think you still can't, so if you want to work with a common table in amodule, you have to make up the
query-response patterns, like the one described in Section 10.1: “ Comparative modularity” (p. 117) .

In a query-response pattern there is some common sub-model, with a stream (in Triceps terms, a label, but here we're
talking the other systems) for the queriesto comein and astream for the resultsto come out (both sides might have not only
one but multiple streams). There are multiple inputs connected, from all the request sources, and the outputs are connected
back to all the request sources. All the request sources (i.e. calers) get back the whole output of the pattern, so they need
to identify, what output came from their input, and ignore the rest. They do this by adding the unique ids to their queries,
and filter the results. In the end, it looks almost like a function but with much pain involved.

To make it look quite like a function, one thing is needed: the selective connection of the result streams (or, returning to
the Triceps terminology, labels) to the caller. Connect the output 1abels, send some input, have it processed and send the
result through the connection, disconnect the output labels. And what you get is a streaming function. It's very much like
a common function but working on the streaming data arguments and results.

The Figure 15.2 highlights the similarity and differences between the query patterns and the streaming functions.

Query call Function call
Current Current
caller caller

Filter Filter Current
’ l return
Current
return

Figure 15.2. The query patternsand streaming functions.

The thick lines show where the data goes during one concrete call. The thin lines show the connections that do exist but
without the data going through them at the moment (they will be used during the other calls, from these other callers). The
dashed thin line shows the connection that doesn't exist at the moment. It will be created when needed (and at that time the
thick arrow from the streaming function to what is now the current return would disappear).

250 Streaming functions

The particular beauty of the streaming functions for Tricepsis that the other callers don't even need to exist yet. They can
be created and connected dynamically, do their job, call the function, use its result, and then be disposed of. The caling
side in Triceps doesn't have to be streaming either: it could as well be procedural.

15.2. Streaming functions by example, another
version of Collapse

The streaming functions have proved quite useful in Triceps, in particular the inter-thread communications use an interface
derived from them. But theironic part isthat coming up with the good examples of the streaming function usage in Triceps
issurprisingly difficult. The flexibility of Tricepsisthe problem. If all you have is SQL, the streaming functions become
pretty much amust. But if you can write the procedural code, most things are easier that way, with the normal procedural
functions. For a streaming function to become beneficial, it has to be written in SQLY primitives (such as tables, joins)
and not be easily reducible to the procedural code. The streaming function examples that aren't big enough for their own
filearecollectedint / xFn. t .

The most distilled example I've come up with is for the implementation of Collapse. The original implementation of Col-
lapse is described in Section 14.2: “Collapsed updates’ (p. 237) . Thef | ush() there goesin aloop deleting the all rows
from the state tables and sending them as rowops to the output.

The deletion of al the rows can nowadays be done easier with the Table method cl ear () . However by itself it doesn't
solve the problem of sending the output. It sends the deleted rows to the table's output label but we can't just connect the
output of the state tables to the Collapse output: then it would also pick up all the intermediate changes! The data needs
to be picked up from the tables output selectively, only inf | ush() .

This makes it a good streaming function: the body of the function consists of running cl ear () on the state tables, and
itsresult is whatever comes on the output labels of the tables.

Since most of the logic remains unchanged, I've implemented this new version of Collapseint / xFn. t asasubclassthat
extends and replaces some of the code with its own:

package FnCol | apse;
sub CLONE_SKIP { 1; }
our @ SA=qwW(Tri ceps:: Col | apse);

sub new # ($cl ass, $opt Nane => $optValue, ...)
{
ny $class = shift;
ny $self = $cl ass->SUPER : newW(@) ;
Now add an FnReturn to the output of the dataset's tables.
One return is enough for both.
Al so create the bindings for sending the data.
foreach ny $dataset (values % $sel f->{datasets}}) {
ny $fret = Triceps:: FnRet urn->new
name => $sel f->{name} . "." . S$dataset->{name} . ".retThl",
| abels => [
del => 3$dat aset->{tbDel et e} - >get Qut put Label (),
ins => $dataset->{tblnsert}->get Qut put Label (),
1,
)
$dat aset->{fret} = $fret;

these variables will be conpiled into the binding snippets
ny $l bQut = $dataset->{IbQut};

ny $unit = $sel f->{unit};

nmy $OP_I NSERT = &Tri ceps: : OP_|I NSERT;

ny $OP_DELETE = &Tri ceps: : OP_DELETE;

Streaming functions by example, another version of Collapse 251

ny $fbind = Triceps:: FnBi ndi ng- >new(
name => $sel f->{nanme} . "." $dat aset - >{nanme} . ".bndThl"
on => $fret,
unit => $unit,
| abel s => [
del => sub {
if ($_[1]->isDelete()) {
$uni t->cal | ($l bQut ->adopt ($_[1]));
}
1
ins => sub {
if ($_[1]->isDelete()) {
$uni t->cal | ($l bQut - >makeRowop($OP_I NSERT, $_[1]->getRow()));

b

1,
)
$dat aset - >{fbi nd} = $f bi nd;
}

bl ess $sel f, $cl ass;
return $sel f;

}

Override the base-class flush with a different inplenentation.
sub flush # ($sel f)

ny $self = shift;

foreach ny $dataset (values % $sel f->{datasets}}) {
The binding takes care of producing and directing
the output. AutoFnBind will unbind when the bl ock ends
ny $ab = Triceps: : Aut oFnBi nd- >new

$dat aset->{fret} => $dat aset->{f bi nd}

)
$dat aset - >{t bDel et e} ->cl ear () ;
$dat aset ->{tbl nsert}->clear();

new() addsthe streaming function elementsin each data set. They consist of two parts: FnReturn defines the return value
of a streaming function (there is no formal definition of the body or the entry point since they are quite flexible), and
FnBinding defines a call of the streaming function. In this case the function is called in only one place, so one FnBinding
isdefined. If called from multiple places, there would be multiple FnBindings.

When anormal procedural functionis called, the return address provides the connection to get the result back from it to the
caller. Inastreaming function, the FnBinding connectsthe result 1abel sto the caller's further processing of the returned data.
Unlike the procedural functions, the datais not returned in one step (run the function, compute the value, return it). Instead
the return value of a streaming function is a stream of rowops. As each of them is sent to areturn label, it goes through the
binding and to the caller's further processing. Then the streaming function continues, producing the next rowop, and so on.

If this sounds complicated, please realize that here we're dealing with the assembly language equivalent for streaming
functions. | expect that over time the more high-level primitives will be developed and it will become easier.

The second source of complexity is that the arguments of a streaming function are not computed in one step either. You
don't normally have a full set of rows to send to a streaming function in one go. Instead you set up the streaming call to
bind the result, then you pump the argument rowops to the function's input, creating them in whatever way you wish.

Getting back to the definition of a streaming function, FnReturn defines a set of labels, each with alogical name. In this
casethe namesare“del” and “ins’. Thelabelsinside FnReturn are a special variety of dummy labels, but they are chained
to some real |abels that send the result of the function. The snippet

252 Streaming functions

del => $dat aset->{tbDel et e} - >get Qut put Label (),

says “create a return label named ‘del’ and chain it from the tbDelete's output label”. The FnReturn normally does its
chaining with chai nFront () , unlessthe option chai nFront => 0 tellsit otherwise. But in this particular case the
chaining order wouldn't matter. There are more detail sto the naming and label creation but let's not get bogged in them now.

The FnBinding defines a matching set of labels, with the same logical names. It's like areceptacle and a plug: you put the
plug into the receptacle and get the data flowing, you unplug it and the data flow stops. The Perl version of FnBinding
provides a convenience: when it gets a code reference instead of a label, it automatically creates a label with that code
for its handler.

In this case both binding labels forward the data to the Collapse's output label. Only the one for the Insert table has to
change the opcodes to OP_INSERT. The check

if ($ [1]->isDelete())

isreally redundant, to be on the safe side, since we know that when the data will be flowing, all of it will be coming from
the table clearing and have the opcodes of OP_DELETE.

The actual call happensin f | ush() : Triceps::AutoFnBind is a constructor of the scope object that does the “plug into
receptable” thing, with automatic unplugging when the object returned by it gets destroyed on leaving the block scope. If
you want to do things manually, FnReturn hasthe methods push() and pop() but the scoped binding is safer and easier.
Once the binding is done, the data is sent through the function by calling cl ear () on both tables. And then the block
ends, $ab get destroyed, AutoFnBind destructor undoes the binding, and thus the streaming function call completes.

The result produced by this version of Collapseis exactly the same as by the original version. And even when we get down
to grits, it's produced with the exact same logical sequence: the rows are sent out as they are deleted from the state tables.
But it's structured differently: instead of the procedural deletion and sending of the rows, the internal machinery of the
tables gets invoked, and the results of that machinery are then converted to the form suitable for the collapse results and
propagated to the output.

Philosophically, it could be argued, what is the body of this function? Is it just the internal logic of the table delection,
that getstriggered by cl ear () inthecaller? Or arethecl ear () calsalso apart of the function body? But it practice
it just doesn't matter, whatever.

15.3. Collapse with grouping by key with
streaming functions

The Collapse as shown before sends all the collected del etes before all the collected inserts. For example, if it has collected
the updates for four rows, the output will be (assuming that the Collapse element is named col | apse and the data set
initisnamedi dat a):

col | apse.idata.out OP_DELETE local _ip="3.3.3.3" remote_ip="7.7.7.7"

byt es="100"

col | apse.idata.out OP_DELETE | ocal _ip="2.2.2.2" renpte_i p="6.6.6.6"
byt es="100"

col | apse.idata.out OP_DELETE | ocal _ip="4.4.4.4" renote_i p="8.8.8.8"
byt es="100"

col | apse.idata.out OP_DELETE local _ip="1.1.1.1" remote_i p="5.5.5.5"
byt es="100"

col | apse.idata.out OP_I NSERT | ocal _ip="3.3.3.3" remote_ip="7.7.7.7"
byt es="300"

col | apse.idata.out OP_I NSERT | ocal _ip="2.2.2.2" renpte_i p="6.6.6.6"
byt es="300"

col | apse.idata.out OP_I NSERT | ocal _ip="4.4.4.4" renote_i p="8.8.8.8"
byt es="300"

Collapse with grouping by key with streaming functions 253

col | apse.idata.out OP_I NSERT | ocal _ip="1.1.1.1" remote_i p="5.5.5.5"
byt es="300"

What if you want the updates produced as del etes immediately followed by the matching inserts with the same key? Like
this:

col | apse. i data.out OP_DELETE local _ip="3.3.3.3" remote_ip="7.7.7.7"

byt es="100"

col | apse.idata.out OP_INSERT | ocal _ip="3.3.3.3" remote_ip="7.7.7.7"
byt es="300"

col | apse. i data.out OP_DELETE | ocal _ip="2.2.2.2" renote_i p="6.6.6.6"
byt es="100"

col | apse.idata.out OP_I NSERT | ocal _ip="2.2.2.2" renote_i p="6.6.6.6"
byt es="300"

col | apse. i data.out OP_DELETE | ocal _ip="4.4.4.4" renote_i p="8.8.8.8"
byt es="100"

col | apse.idata.out OP_I NSERT | ocal _ip="4.4.4.4" renote_i p="8.8.8.8"
byt es="300"

col | apse. i data.out OP_DELETE local _ip="1.1.1.1" renote_i p="5.5.5.5"
byt es="100"

col | apse.idata.out OP_INSERT local _ip="1.1.1.1" renmote_i p="5.5.5.5"
byt es="300"

With the procedural version it would have required doing a look-up in the Insert table after processing each row in the
Delete table and handling it if found. So I've left it out to avoid complicating that example. But in the streaming function
form it becomes easy, just change the binding of the “del” label alittle bit:

ny $l bl nsl nput = $dat aset - >{t bl nsert}->get | nput Label ();

my $fbind = Triceps: : FnBi ndi ng- >new(
nane => $self->{nanme} . "." . $dataset->{nane} . ".bndTbl"
on => $fret,
unit => $unit,
| abel s => |
del => sub {
if ($_[1]->isDelete()) {
$uni t->cal | ($l bQut->adopt ($_[1]));
If the INSERT is available after this DELETE, this
will produce it.
$uni t->cal | ($I bl nsl nput - >adopt ($_[1]));
}
b
ins => sub {
if ($_[1]->isDelete()) {
$uni t - >cal | ($l bQut - >makeRowop($OP_I NSERT, $_[1] - >get Row()));

1,
)

The“del” binding first sendsthe result out as usual and then forwardsthe DELETE rowop to the Insert tabl€e'sinput. Which
then causes the INSERT rowop to be sent if a match is found. Mind you, the look-up and conditional processing till
happens. But now it al happens inside the table machinery, al you need to do is add one more line to invoke it.

Let's talk through in a little more detail, what happens when the clearing of the Delete table deletes the row with
(local _ip="3.3.3.3" renote_ip="7.7.7.7").

1. The Delete table sends a rowop with this row and OP_DELETE to its output label
col | apse.idata.tbDel ete. out.

2. Which then gets forwarded to a chained label in the FnReturn, col | apse. i dat a. ret Thl . del .

254 Streaming functions

3. FnReturn has an FnBinding pushed into it, so the rowop passes to the matching label in the binding,
col | apse. i dat a. bndThl . del .

4. The Perl handler of that label gets caled, first forwards the rowop to the Collapse output label
col | apse. i dat a. out , and then to the Insert table'sinput label col | apse. i data.tblnsert.in.

5. The Insert table looks up the row by the key, finds it, removes it from the table, and sends an OP_DELETE rowop to
itsoutput label col | apse. i data.tbl nsert. out.

6. Which then gets forwarded to a chained label in the FnReturn, col | apse. i data. ret Thl . i ns.

7. FnReturn has an FnBinding pushed into it, so the rowop passes to the matching label in the binding,
col | apse. i data. bndThl . i ns.

8. The Perl handler of that label gets called and sends the rowop with the opcode changed to OP_INSERT to the Collapse
output label col | apse. i dat a. out .

It'safairly complicated sequence but all you needed to do was to add one line of code. The downside of course is that if
something goes not the way you expected, you'd have to trace and understand the whole long sequence (that's the typical
trouble with the SQL -based systems).

When the INSERTs are sent after DELETES, their rows are removed from the Insert table too, so the following cl ear ()
of the Insert table won't find them any more and won't send any duplicates; it will send only the inserts for which there
were no matching deletes.

And of course if thereisonly a DELETE collected for a certain key, not an update, there will be no matching row in the
Insert table, so the forwarded DELETE request will have no effect and produce no output from the Insert table.

Y ou may notice that the code in the “del” handler only forwards the rows around, and that can be replaced by a chaining:

ny $I bDel = $unit->makeDunmmyLabel (
$dat aset - >{t bDel et e} - >get Qut put Label () - >get RowType(),
$sel f->{nane} . "." . $dataset->{name} . ".lbDel");
$1 bDel - >chai n($l bQut) ;
$! bDel - >chai n($I bl nsl nput);

ny $fbind = Triceps:: FnBi ndi ng- >new(
nane => $self->{nane} . "." . $dataset->{nane} . ".bndTbl",
on => $fret,
unit => $unit,
| abel s => [
del => $l bDel,
ins => sub {
$uni t - >cal | ($l bQut - >makeRowop($OP_I NSERT, $_[1] - >get Row()));

This shows another way of label definition in FnBinding: an actual label is created first and then given to the FnBinding,
instead of letting it automatically create alabel from the code. The condition“i f ($_[1] - >i sDel et e()) ” hasbeen
removed from the “ins’ part, sinceit's really redundant and the “del” part with its chaining doesn't do this check anyway.

This code works just as well and even more efficiently than the previous version, since no Perl code needs to be invoked
for “del”, it all propagates internally through the chaining. However the price is that the DELETE rowops coming out of
the output label will have the head-of-the-chain label in them:

col | apse.idata.| bDel OP_DELETE |ocal _ip="3.3.3.3" renote_ip="7.7.7.7"

Collapse with grouping by key with streaming functions 255

byt es="100"
col | apse.idata.out OP_I NSERT | ocal _ip="3.3.3.3" remote_ip="7.7.7.7"

byt es="300"

col | apse.idata.lbDel OP_DELETE |ocal _i p="2.2.2.2" renpte_i p="6.6.6.6"
byt es="100"

col | apse.idata.out OP_I NSERT | ocal _ip="2.2.2.2" renote_i p="6.6.6.6"
byt es="300"

col | apse.idata.| bDel OP_DELETE |ocal _i p="4.4.4.4" renpte_i p="8.8. 8. 8"
byt es="100"

col | apse.idata.out OP_I NSERT | ocal _ip="4.4.4.4" renote_i p="8.8.8.8"
byt es="300"

col | apse.idata.lbDel OP_DELETE |local _ip="1.1.1.1" renpte_ip="5.5.5.5"
byt es="100"

col | apse.idata.out OP_I NSERT | ocal _ip="1.1.1.1" remote_i p="5.5.5.5"
byt es="300"

The"ins’ side can't be handled just by chaining because it has to replace the opcode in the rowops. Another potential way
to handle this would be to define various preprogrammed label typesin C++ for many primitive operations, like replacing
the opcode, and then build the models by combining them.

The final item is that the code shown in this section involved a recursive call of the streaming function. Its output from
the “del” label got fed back to the function, producing more output on the “ins’ label. This worked because it invoked a
different code path in the streaming function than the one that produced the “del” data. If it were to form a topological
loop back to the same path with the same labels, that would have been an error. The more advanced use of recursion is
possible and will be discussed in more detail later.

15.4. Table-based translation with streaming
functions

Next | want to show an examplethat isin itsessence kind of dumb. The samething iseasier to do in Tricepswith templates.
And the whole premiseis not exactly great either. But it provides an opportunity to show more of the streaming functions,
in aset-up that is closer to the SQL-based systems.

The background is as follows: There happen to be multiple ways to identify the securities (stock shares and such). RIC
is the identifier used by Reuters (and quite often by the other data suppliers too), consisting of the ticker symbol on an
exchange, adot, and the coded name of the exchange (such as“L” for the London stock exchange or “N” for the New Y ork
stock exchange). ISNistheinternational standard alphanumericidentifier. A security (and some of its creative equivalents)
might happen to be listed on multiple exchanges, each listing having its own RIC. And if you wonder, the ticker names are
allocated separately by each exchange and may differ. But all of these RICs refer to the same security, thus translating to
the same ISIN (there might be multiple ISINs too but that's another story). A large financial company would want to track
a security all around the world. To aggregate the data on the security worldwide, it has to identify it by ISIN, but the data
feed might be coming in as RIC only. The translation of RIC to ISIN is then done by the table during processing. The RIC
is not thrown away either, it showsthe detail of what and where had happened. But ISIN is added for the aggregation on it.

The data might be coming from multiple feeds, and there are multiple kinds of data: trades, quotes, lending quotes and so
on, each with its own schema and its own aggregations. However the step of RIC-to-I1SIN trandlation is the same for all
of them, is done by the same table, and can be done in one place. Of course, multithreading can add more twists here but
for now we're talking about a simple single-threaded example.

An extracomplexity isthat in the real world the translation table might be incomplete. However some feeds might provide
both RICs and ISINs in their records, so the pairs that aren't in the reference table yet, can be inserted there and used for
the following tranglations. Thisisactually not such agreat idea, because it means that there might be previous records that
went through before the trand ation became available. A much better way would be to do the trandation as a join, where
the update to a reference table would update any previous records as well. But then there would not be much use for a
streaming function in it. Asl've said before, it's arather dumb example.

256 Streaming functions

The streaming function will work like this: It will get an argument pair of (RIC, ISIN) from an incoming record. Either
component of this pair might be empty. Since the rest of the record is wildly different for different feeds, the rest of the
record isleft off at this point, and the uniform argument of (RIC, ISIN) isgiven to the function. The function will consult its
table, seeif it can add more information from there, or add more information from the argument into the table, and return
the hopefully enriched pair (RIC, ISIN) with an empty ISIN field replaced by the right value, to the caller.

The function is defined like this:

ny $rtlsin = Triceps:: RowType->new
ric => "string",
isin => "string",

)

ny $ttlsin = Triceps:: Tabl eType->new($rtl sin)
- >addSubl ndex("byRi c", Triceps::|ndexType->newHashed(key => ["ric"])
)

$ttlsin->initialize();
ny $tlsin = $unit->nmakeTabl e($ttlsin, "tlsin");

the results will cone from here
ny $fretLookuplsin = Triceps:: FnReturn->new
name => "fretLookuplsin",
unit => $unit,
| abels => [
result => $rtlsin,
I,
)

The function argument: the input data will be sent here.
ny $l bLookupl sin = $unit->makelLabel ($rtlsin, "IbLookuplsin", undef, sub {
ny $row = $_[1]->get Row();
if ($row>get("ric")) {
nmy $argrh = $t1sin->makeRowHandl e($row) ;
nmy $rh = $tlsin->find($argrh);
if ($rh->isNull()) {
if ($row>get("isin")) {
$tlsin->insert($argrh);
}
} else {
$row = $rh->get Row() ;
}

}
$uni t->cal | ($fret Lookupl si n->get Label ("result")->makeRowop(" OP_I NSERT", $row));

1)

The $f r et Lookupl si n is the function result, $| bLookupl si n is the function input. In this example the re-
sult label in FnReturn is defined differently than in the previous ones. not by a source label but by a row
type. This label doesn't get chained to anything, instead the procedural code in the function finds it as $fr et -
Lookupl si n->get Label ("resul t") andcalsit directly.

Then the ISIN translation code for some trades feed would look as follows (remember, supposedly there would be many
feeds, each one with its own schema, but for the example | show only one):

ny $rtTrade = Triceps:: RowType- >new
ric => "string",

isin => "string",

size => "f| oat 64",

price => "fl oat 64",

)

Table-based translation with streaming functions 257

ny $I bTradeEnriched = $unit->nmakeDumylLabel ($rt Trade, "I bTradeEnriched");
ny $l bTrade = $unit->nekelLabel ($rtTrade, "l bTrade", undef, sub {
ny $rowop = $_[1];
ny $row = $rowop->get Row() ;
Triceps:: FnBi nding: :call(
name => "cal | TradeLookupl si n",
on => $fretLookuplsin,
unit => $unit,
rowop => $l bLookupl si n- >nakeRowopHash(" OP_I NSERT",
ric => $row>get("ric"),
isin => $row>get("isin"),
)
| abels => [
result => sub { # a label will be created fromthis sub
$uni t->cal | ($l bTradeEnri ched- >makeRowop($r owop- >get Opcode(),
$r ow >copynod(
isin => $_[1]->get Row()->get ("isin")
)
));

The label $I bTr ade receives the incoming trades, cals the streaming function to enrich them with the ISIN data,
and forwards the enriched data to the label $I bTr adeEnr i ched. The function call is done differently in this exam-
ple. Rather than create a FnBinding object and then use it with a scoped AutoFnBind, it uses the convenience function
FnBi ndi ng: : cal | () that wraps all that logic. It's smpler to use, without all these extra objects, but the price is the
efficiency: it ends up creating anew FnBinding object for every call. That's where acompiler would be very useful, it could
take acall likethis, trandlate it to the internal objects once, and then keep reusing them.

The FnBi ndi ng: : cal | () option “name” gives a name that is used for the error messages and also to produce the
names of thetemporary objectsit creates. The option “on” tells, which streaming function isbeing called (by specifying its
FnReturn). The option “rowop” gives the arguments of the streaming functions. There are multiple ways to do that: option
“rowop” for asingle rowop, “rowops’ for an array of rowops, “tray” for atray, and “code” for a procedural code snippet
that would send the inputs to the streaming function. And “labels” as usual connects the results of the function, either to
the existing labels, or by creating labels automatically from the snippets of code.

The result handling in this example demonstrates the technique that | call the “implicit join”: The function gets a portion
of datafrom an original row, does some transformation and returns the data back. This datais then joined with the original
row. The code knows, what this original row was, it gets remembered in the variable $r ow. The semantics of the call
guarantees that nothing else has happened during the function call, and that $r owistill the current row. Then the function
result gets joined with $r ow, and the produced data is sent further on itsway. The variable $r ow could be either a global
one, or as shown here a scoped variable that gets embedded into a closure function.

Therest of the example, the dispatcher part, is:

print what is going on
ny $lbPrintlsin = makePrintLabel ("printlsin", $tlsin->getCutputlLabel());
ny $l bPrintTrade = nmakePrintLabel ("printTrade", $lbTradeEnriched);

the main | oop

ny %i spatch = (

isin => $tlsin->getlnputLabel (),
trade => $l bTrade,

)

whi | e(<STDI N>) {
chonp;

258 Streaming functions

ny @lata split(/,/); # starts with a command, then string opcode
ny $type shift @lat a;

ny $l b = $di spat ch{$type};

ny $rowop = $l b- >nakeRowopArray(@at a) ;

$uni t - >cal | ($r owop) ;

$unit->drai nFrane(); # just in case, for conpleteness

}

And an example of running, with the input lines shown in bold:

i si n, OP_I NSERT, ABC. L, US0000012345

tlsin.out OP_INSERT ric="ABC. L" isin="US0000012345"

i si n, OP_I NSERT, ABC. N, US0000012345

tlsin.out OP_INSERT ric="ABC. N' isin="US0000012345"

i si n, OP_I NSERT, DEF. N, US0000054321

tlsin.out OP_INSERT ric="DEF. N' isin="US0000054321"

trade, OP_I NSERT, ABC. L, , 100, 10.5

| bTradeEnri ched OP_I NSERT ric="ABC. L" isin="US0000012345" si ze="100"
price="10.5"

trade, OP_DELETE, ABC. N, , 200, 10.5

| bTradeEnri ched OP_DELETE ric="ABC. N' isin="US0000012345" si ze="200"
price="10.5"

trade, OP_I NSERT, GHI . N, , 300, 10. 5

| bTradeEnri ched OP_INSERT ric="GH .N' isin="" size="300" price="10.5"

trade, OP_I NSERT, , XX0000012345, 400, 10. 5

| bTradeEnri ched OP_I NSERT ric="" isin="XX0000012345" size="400"
price="10.5"

trade, OP_I NSERT, GHI . N, XX0000012345, 500, 10. 5

tIsin.out OP_INSERT ric="GH .N' isin="XX0000012345"

| bTradeEnri ched OP_I NSERT ric="GH . N' isin="XX0000012345" si ze="500"
price="10.5"

trade, OP_I NSERT, GHI . N, , 600, 10. 5

| bTradeEnri ched OP_I NSERT ric="GH . N' isin="XX0000012345" si ze="600"
price="10.5"

Thetable gets pre-popul ated with afew translations, and thefirst few trades use them. Then goesthe exampl e of anon-exist-
ing tranglation, which gets eventually added from the incoming data (see that thetradewith (GHI . N, XX0000012345)
both updates the ISIN table and sends through the trade record), and the following trades can then use this newly added
translation but obviously the older ones do not get updated.

15.5. Streaming functions and loops

The streaming functions can be used to replace the topol ogical 1oops (where the connection between thelabelsgoin circles)
with the procedural ones. Just make the body of the loop into a streaming function and connect its output with its own input
(and of course also to the loop results). Then call this function in a procedural while-loop until the data stop circulating.

Theway the streaming functions have been described so far, thereisacatch, even two of them: First, with such aconnection,
the output of the streaming function would immediately circulate to its input, and would try to keep circulating until the
loop is done, with no need for awhile-loop. Second, as soon asit attemptsto circulate, the scheduler will detect arecursive
call and die (unless you change the recursion settings, however thisis not a good reason to change them).

But thereis also a solution that has not been described yet: an FnBinding can collect the incoming rowopsin atray instead
of immediately forwarding them. This tray can be called later, after the original function call completes. This way the
iteration has its data collected, the function completes, and then the next iteration of the while-loop starts, sending the data
from the previous iteration. When there is nothing to send any more, the loop compl etes.

Using thislogic, let's rewrite the Fibonacci example with the streaming function loops. Its original version and description
of the logic can be found in Section 7.7: “Topological loops’ (p. 46) .

Streaming functions and loops 259

The new version is:
ny $uFib = Triceps::Unit->new("uFib");

Hit#
A streaning function that conputes one step of a
Fi bonacci nunber, will be called repeatedly.

Type of its input and output.

ny $rtFib = Triceps:: RowType->new

iter => "int32", # nunber of iterations left to do
cur => "int64", # current nunber

prev => "int64", # previous nunber

)

| nput:

8l bFi bConmpute: request to do a step. iter will be decrenented,
cur noved to prev, new value of cur conputed.

Qut put (by FnReturn | abels):

"next": data to send to the next step, if the iteration

is not finished yet (iter in the produced row is >0).

"result": the result data if the iretaion is finished

(iter in the produced rowis 0).

The opcode is preserved through the conputation.

ny $frFib = Triceps::FnRet urn->new
name => "Fib",
unit => $uFi b,
| abels => [
next => $rtFib,
result => $rtFib,
1,
)

ny $| bFi bConput e = $uFi b- >makelLabel ($rtFi b, "Fi bConpute",
ny $row = $_[1]->get Row();
ny $prev = $row >get("cur");
nmy $cur = $prev + $row >get ("prev");
ny $iter = $row>get("iter") - 1;
$uFi b- >makeHashCal | ($fr Fi b- >get Label ($iter > 0? "next"
iter => S$iter,
cur => $cur,
prev => $prev,
)
1)

End of stream ng function
Hit#

undef, sub {

"result"),

ny $l bPrint = $uFi b->nakelLabel ($rtFi b, "Print", undef, sub {

print($_[1]->get Row()->get("cur"));
1)

binding to run the Triceps steps in a |oop
ny $f bFi bLoop = Triceps: : FnBi ndi ng- >new(
name => "Fi bLoop",
on => $frFib,
withTray => 1,
| abels => [
next => $I| bFi bConput e,
result => $l bPrint,

$_[1] - >get Opcode(),

260

Streaming functions

1.
)

ny $l bMai n = $uFi b- >makelLabel ($rtFi b, "Miin", undef, sub {
ny $row = $_[1]->get Row();

{
ny $ab = Triceps:: Aut oFnBi nd- >new $f r Fi b, $f bFi bLoop) ;
send the request into the |oop
$uFi b- >makeHashCal | ($l bFi bConpute, $_[1] ->get Opcode(),
iter => $row >get("iter"),
cur => 0, # the "0-th" nunber
prev => 1,
)
now keep cycling the loop until it's all done
whil e (!$fbFi bLoop->trayEnpty()) ({
$f bFi bLoop->cal | Tray();
}
}
print(" is Fibonacci nunber ", $row>get("iter"), "\n");
1)
whi | e(<STDI N>) {
chonp;

ny @ata = split(/,/);
$uFi b- >makeAr rayCal | ($l bMai n, @lat a) ;
$uFi b->drai nFrame(); # just in case, for conpleteness

}
It produces the same output as before (as usual, the linesin bold are the input lines):

OP_| NSERT, 1
1 is Fibonacci nunber 1
OP_DELETE, 2
1 is Fibonacci nunber 2
OP_I NSERT, 5
5 is Fibonacci nunber 5
OP_I NSERT, 6
8 i s Fibonacci nunber 6

The option “withTray” of FnBind is what makesit collect the rowopsin atray. The rowops are not the original incoming
ones but already translated to call the FnBinding's output labels. The method cal | Tray() swaps the tray with a fresh
one and then callsthe original tray with the collected rowops. There are more methods for the tray control: swapTr ay()
swaps the tray with a fresh one and returns the original one, which can then beread or called; t r aySi ze() returns not
just the emptiness condition but the whole size of the tray.

The whole loop runsin one binding scope, because it doesn't change with theiterations. Thefirst row primes the loop, and
then it continues while there is anything to circulate.

This example sent both the next iteration rows and the result rows through the binding. But for the result rows it doesn't
have to. They can be sent directly out of the loop:

ny $| bFi bConput e = $uFi b->makelLabel ($rtFi b, "Fi bConpute", undef, sub {

ny $row = $_[1] ->get Row();

ny $prev = $row >get("cur");

nmy $cur = $prev + $row >get ("prev");

ny $iter = $row>get("iter") - 1;

$uFi b- >makeHashCal | ($iter > 0? $frFi b->get Label ("next") : $lbPrint, $_[1]->get Qpcode(),
iter => S$iter,
cur => $cur,

Streaming functions and loops 261

prev => $prev,
);
1)

The printed result is exactly the same as in the previous example.

15.6. Streaming functions and pipelines

The streaming functions can be arranged into a pipeline by binding the result of one function to the input of another one.
Fundamentally, the pipelinesin theworld of streaming functions are analogs of the nested callswith the common functions.
For example, a pipeline (written for shortnessin the Unix way)

al b| c
isan analog of the common function calls
c(b(a()))

Of course, if the pipeline is fixed, it can as well be connected directly with the label chaining and then stay like this. A
more interesting case is when the pipeline needs to be reconfigured dynamically based on the user requests. An interesting
example of pipeline usage comes from the data security. A client may connect to a CEP model element in a clear-text or
encrypted way. In the encrypted way the data received from the client needs to be decrypted, then processed, and then the
results encrypted before sending them back:

receive | decrypt | process | encrypt | send
In the clear-text mode the pipeline becomes shorter:

receive | process | send

Let's make an example around thisidea: To highlight the flexibility, the configuration will be selectable for each input line.
If theinput startswitha“+”, it will be considered encrypted, otherwise clear-text. Since the actual security is not important
for the example, it will be simulated by encoding the text in hex (each byte of data becomes two hexadecimal digits). The
real encryption, such as SSL, would of course require the key negotiation, but this little example just skips over this part,
sinceit has no key. First, define the input and output (receive and send) endpoints:

Al the input and output gets converted through an intermediate
format of a rowwith one string field.
ny $rtString = Triceps:: RowType- >new(

s => "string"

)

Al the input gets sent here.
ny $l bRecei ve = $unit->makeDummylLabel ($rtString, "l bReceive");
ny $retReceive = Triceps:: FnRet ur n- >new(

name => "ret Receive",

| abels => [

data => $| bRecei ve,

1,

)

The binding that actually prints the output.
ny $bi ndSend = Tri ceps: : FnBi ndi ng- >new(
name => "bi ndSend",
on => $retReceive, # any matching return will do
unit => $unit,
| abels => [
data => sub {

262 Streaming functions

print($_[1]->get Row()->get("s"), "\n");
. ,
)

The same row type $rt St ri ng will be used for the whole pipeline, sending through the arbitrary strings of text. The
binding $bi ndSend isdefined on $r et Recei ve, so they can actually be short-circuited together. But they don't have
to. $bi ndSend can be bound to any matching return. The matching return is defined as having the same number of labels
init, with matching row types. The names of the labels don't matter but their order does. It's a bit tricky: when abinding
is created, the labels in it get connected to the return on which it's defined by name. But at this point each of them gets
assigned a number, in order the labels went in that original return. After that only this number matters: if this binding gets
connected to another matching return, it will get the data from the return’s label with the same number, not the same name.

Next step, define the endpoints for the processing: the dispatcher and the output label. All of them use the same row type
and matching returns. The actual processing will eventually be hard-connected between these endpoints.

ny %li spatch; # the dispatch table will be set here

The binding that dispatches the input data
nmy $bi ndDi spatch = Tri ceps: : FnBi ndi ng- >new(
nanme => "bi ndDi spatch",
on => $ret Receive,
unit => $unit,
| abel s => |
data => sub {
ny @ata = split(/,/, $ [1]->getRow)->get("s")); # starts with a conmand, then
string opcode
ny $type = shift @lata;
ny $l b = $di spat ch{$type};
ny $rowop = $I b- >nakeRowopAr r ay(@lat a) ;
$uni t - >cal | ($r owop) ;
I8
I
);

Al the output gets converted to rtString and sent here.
ny $l bQut put = $unit->makeDummyLabel ($rtString, "l bQutput");
ny $retQutput = Triceps:: FnRet urn->new(

nane => "retCQutput”,

| abel s => |

data => $l bQut put,

I

);

And now the filters for encryption and decryption. Each of them has abinding for its input and areturn for its output. The
actual pseudo-encryption transformation is done with Perl functionsunpack() and pack() .

The encryption pipeline el enment.
ny $retEncrypt = Triceps:: FnRet urn- >new
name => "retEncrypt",
unit => $unit,
| abels => [
data => $rtString,
1.
);
ny $l bEncrypt = $ret Encrypt->getLabel ("data");
ny $bi ndEncrypt = Triceps:: FnBi ndi ng- >new
name => "bi ndEncrypt",
on => $ret Receive,
unit => $unit,

Streaming functions and pipelines 263

| abels => [
data => sub {
ny $s = $_[1]->get Row() - >get ("s");
$uni t - >makeArrayCal | ($l bEncrypt, "OP_I NSERT", unpack("H", $s));
},
1,
)

The decryption pipeline el enment.
ny $retDecrypt = Triceps:: FnReturn->new
nane => "retDecrypt"”
unit => $unit,
| abels => [
data => $rtString
1,
)
ny $l bDecrypt = $retDecrypt->getLabel ("data");
ny $bi ndDecrypt = Triceps:: FnBi ndi ng- >new
name => "bi ndDecrypt"
on => $ret Receive
unit => $unit,
| abels => [
data => sub {
ny $s = $_[1]->get Row() - >get ("s");
$uni t - >makeArrayCal | ($l bDecrypt, "OP_I NSERT", pack("H", $s));
},
1,
)

Then goes the body of the model. It defines the actual row types for the data that gets parsed from strings and the business
logic (which is pretty simple, increasing an integer field). The dispatch table connects the dispatcher with the business
logic, and the conversion from the data rows to the plain text rows is done with template makePi pePri nt Label ().
This template is very similar to the template makePr i nt Label () that was shown in Section 10.3: “Simple wrapper
templates’ (p. 119) .

sub nakePi pePrint Label ($$$) # ($print_| abel _nanme, $parent | abel, $out_| abel)
{
ny $nanme = shift;
ny $l bParent = shift;
ny $l bQut put = shift;
nmy $unit = $I bQut put->get Unit();
ny $l b = $I bParent - >get Uni t () - >makeLabel ($| bPar ent - >get Type(), $nane,
undef, sub { # (label, rowop)
$uni t - >makeArrayCal | (
$l bQut put, "OP_INSERT", $ [1]->printP());
1)
$l bPar ent - >chai n($l b) ;
return $lb;

}

The body of the nodel: pass through the name, increase the count.
ny $rtData = Triceps:: RowType- >new

name => "string"

count => "int32"

)

ny $l bl ncResult = $unit->makeDumyLabel ($rtData, "result");
ny $l bl nc = $unit->makelLabel ($rtData, "inc", undef, sub {
ny $row = $_[1]->get Row();
$uni t - >makeHashCal | ($l bl ncResult, $_[1]->get Opcode(),
name => $row >get (" name"),

264 Streaming functions

count => $row >get("count") + 1,
)
1
nakePi pePrint Label ("printResult", $|blncResult, $lbQutput);

%li spatch = (
inc => $l bl nc,

)

Finally, themain loop. It will check theinput linesfor theleading “+" and construct one or the other pipelinefor processing.
Of course, the pipelines don't have to be constructed in the main loop. They could have been constructed in the handler of
$l bRecei ve just aswell (then it would need a separate label to send itsresult to, and to include into $r et Recei ve).

whi | e(<STDI N>) {
nmy $ab;
chonp;
if (/™M+) {
$ab = Triceps:: Aut oFnBi nd- >new(
$ret Recei ve => $bi ndDecrypt,
$ret Decrypt => $bi ndDi spat ch,
$ret Qut put => $bi ndEncrypt,
$ret Encrypt => $bi ndSend,
)
$ = substr($_, 1);
} else {
$ab = Triceps:: Aut oFnBi nd- >new(
$ret Recei ve => $bi ndDi spat ch,
$ret Qut put => $bi ndSend,
)
b
$uni t - >makeArrayCal | ($l bRecei ve, "OP_I NSERT", $_);
$uni t - >dr ai nFrame() ;

The constructor of AutoFnBind can accept multiple return-binding pairs. It will bind them al, and unbind them back on
its object destruction. It's the same thing as creating multiple AutoFnBind objects, one for each pair, only more efficient.
And hereis an example of arun (as usua the input lines are in bold, and the long lines get wrapped):

i nc, OP_I NSERT, abc, 1

result OP_I NSERT nane="abc" count="2"

i nc, OP_DELETE, def, 100

result OP_DELETE nanme="def" count="101"

+696e632c4f 505f 494e534552542¢6162632c32

726573756c74204f 505f 494e53455254206e€616d653d226162632220636f 756e743d2
2332220

+696e632c4f 505f 44454c4554452¢6465662¢313031

726573756c74204f 505f 44454c455445206€616d653d226465662220636f 756e743d2
23130322220

What isin the encrypted data? The input lines have been produced by running a Perl expression manually:

$ perl -e '"print((unpack "H", "inc, OP_I NSERT, abc, 2"), "\n");'
696e632c4f 505f 494e534552542¢6162632c32
$ perl -e '"print((unpack "H", "inc, OP_DELETE, def, 101"), "\n");'

696e632c4f 505f 44454¢c4554452¢6465662¢313031

They and their results can be decoded by running another Perl expression:

$ perl -e '"print((pack "H", "726573756c74204f 505f 494e53455254206e616
d653d226162632220636f 756e743d22332220"), "\n");'

Streaming functions and pipelines 265

result OP_I NSERT nanme="abc" count="3"

$ perl -e 'print((pack "H", "726573756c74204f505f 44454c455445206e616
d653d226465662220636f 756€743d223130322220"), "\n");'

result OP_DELETE nanme="def" count="102"

15.7. Streaming functions and tables

Sometimes you might want to collect atable's reaction to an operation on it and process it manually afterwards. Triceps
1.0 had a specia feature called “copy tray” to support that but starting with the version 2.0 the streaming functions solve
this problem much better, replacing the copy trays.

If you connect the table's output to a FnReturn and then push abinding with atray onto it, the table's output will be collected
on that tray. There is even a Table method that creates this FnReturn:;

$fret = $table->fnReturn();

The return contains the labels “pre’, “out”, “dump” (more on that one below) and the named labels for all aggregators.
The FnReturn object is created on the first call of this method and is kept in the table. All the following calls return the
same object. This has some interesting consequences for the “pre” label: the rowop for the “pre”’ label doesn't get created
at al if there is nothing chained from that label. But when the FnReturn gets created, one of its labels gets chained from
the“pre”’ label. Which meansthat once you call $t abl e- >f nRet ur n() for thefirst time, you will seethat table's“ pre’
label called in all the traces. It's not a huge extra overhead, but still something to keep in mind and not be surprised when
caling f nRet ur n() changesall your traces.

The following code demonstrates the use of an FnReturn to collect the changes done to a table on insert:

my $fretl = $t1->fnReturn();
ny $fbindl = Triceps:: FnBi ndi ng- >new(
unit => $unit,
nane => "fbindl",
on => $fretl,
withTray => 1,
| abel s => [
out => sub { }, # another way to make a dunmy
1.
);

$f ret 1- >push($f bi nd1);
$t 1- >i nsert ($rowd) ;
$f ret 1- >pop($f bi nd1);

$tray contains the rowops produced by the update
ny $tray = $fbindl->swapTray(); # get the updates on an insert
ny @owops = $tray->toArray();

And then you could for example check if any rowop has the DELETE opcode, this meaning that an old row was displaced
by this insert. Of course, this is not the most efficient way. Placing the check into the label handler would be a better
approach. And you don't even have to collect the rowopsin atray, you can as well compute the result on the fly:

ny $seenDel et e;

my $fretl = $t1->fnReturn();
ny $fbindl = Triceps:: FnBi ndi ng- >new(

unit => $unit,

name => "fbi nd1",

on => $fretl,

| abel s => [

out => sub {
$seenDelete = 1 if ($_[1]->isDelete());

266 Streaming functions

1.
)

$fret 1- >push($f bi nd1);
$seenDel ete = 0;

$t 1->i nsert ($rowl);
$fret 1- >pop($f bi ndl) ;

if ($seenDelete) {
there was a displ acenent

}

The variable $seenDel et e isremembered in the closure function that handles the “out” label and setsit accordingly.

In both examples the binding doesn't have to be created from scratch each time. Creating it once and then reusing as needed
would be more efficient.

And of course the use of an FnReturn doesn't preclude you from connecting the table outputs as usual .

Another feature where the tables and streaming functions intersect is the table dumping. It allows to iterate on atable in
afunctional manner.

Thelabel “dump” ispresent in the table and its FnReturn. Whenever the method Tabl e: : dunpAl | () iscalled, it sends
the whole contents of the table to that Iabel. Then you can set a binding on the table's FnReturn, call dunpAl | (), and
the binding will iterate through the whole table's contents.

If you want to get the dump label explicitly, you can do it with
ny $dl ab = $t abl e- >get DunpLabel () ;

Normally the only reasonto do that would beto add it to another FnReturn (besidesthetable's FnReturn). Chaining anything
else directly to thislabel would not make much sense, because the dump of the table can be called from many places, and
the directly chained label will receive data every time the dump is called.

The grand plan is aso to add the dumping by a a condition that selects a sub-index, but it's not implemented yet. Y ou can
select an index for an alternative ordering but all the rows get dumped in any case.

The method dunpAl | 1 dx() isthe one that sends the rows in the order of a chosen index, rather than the default first
leaf index:

$t abl e- >dunpAl | () ;
$t abl e- >dunpAl | | dx($i ndexType) ;

Asusual, the index type must belong to the exact type of this table. For example:
$t abl e- >dunpAl | | dx($t abl e- >get Type() - >f i ndl ndexPat h("cb"), "OP_NOP");
Thetypical usage looks like this:

Triceps:: FnBi nding: :call(
name => "jterate",
on => $tabl e->f nReturn(),
unit => $unit,
| abels => [
dunp => sub { ... },
1,
code => sub {
$t abl e- >dunpAl | ();

Streaming functions and tables 267

3,
)

It's less efficient than the normal iteration but sometimes comes handy.

Normally the rowops are sent with the opcode OP_INSERT. But the opcode can also be specified explicitly:

$t abl e- >dunpAl | ($opcode) ;
$t abl e- >dunpAl | | dx($i ndexType, $opcode);

And some more interesting examples will be forthcoming in Section 15.11: “ Streaming functions and unit boundaries’ (p.
283) and Section 17.6: “Internals of aTQL join™ (p. 347) .

15.8. Streaming functions and template results

The same way as the FnReturns can be used to get back the direct results of the operations on the tables, they can be
also used on the templates in general. Indeed, it's a good idea to have a method that would create an FnReturn in al the
templates. So | went ahead and added it to the LookupJoin, JoinTwo and Collapse.

For the joins, the resulting FnReturn has one label “out”. It's created similarly to the table's:
ny $fret = $join->nReturn();

And then it can be used as usual. The implementation of this method isfairly simple:

sub fnReturn # (self)

ny $self = shift;
if (!defined $self->{fret}) {
$sel f->{fret} = Triceps::FnReturn->new
nane => $sel f->{nane} . ".fret"
| abels => [
out => $sel f->{out put Label },
1,
)
}

return $sel f->{fret};

}

All thismakesthemethod| ookup() of LookupJoin essentially redundant, since now pretty much all the same can bedone
with the streaming function API, and even better, becauseit providesthe opcodes on rowops, can handlethefull processing,
and calls the rowops one by one without necessarily creating an array. But it could happen yet that the | ookup() has
some more convenient uses too, so | didn't removeit yet.

For Collapse the interface is alittle more complicated: the FnReturn contains alabel for each data set, named the same as
the data set. The order of labels follows the order of the data set definitions (though right now it's kind of moot, because
only one data set is supported). The implementation is:

sub fnReturn # (self)

ny $self = shift;
if (!defined $self->{fret}) {
ny @ abels;
for my $n (@ $sel f->{dset nanes}}) {
push @ abels, $n, $sel f->{datasets}{$n}{lbCQut};

$sel f->{fret} = Triceps::FnReturn->new
name => $sel f->{nanme} . ".fret",

268 Streaming functions

| abel s => \ @ abel s,
)
}

return $sel f->{fret};

}

Use these examples to writethe f nRet ur n() inyour templates.

15.9. Streaming functions and recursion

Let'slook again at the pipeline example. Suppose we want to do the encryption twice (you know, maybe we have a secure
channel to a semi-trusted intermediary who can can read the envelopes and forward the encrypted messages he can't read
to the final destination). The pipeline becomes

decrypt | decrypt | process | encrypt | encrypt
Or if you want to think about it in a more function-like notation, rather than a pipeline, the logic can also be expressed as:
encrypt (encrypt (process(decrypt(decrypt(data)))))

However it would not work directly: a decrypt function has only one output and it can not have two bindings at the same
time, it would not know which one to use at any particular time.

Instead you can make decrypt into atemplate, instantiate it twice, and connect into a pipeline. It's very much like what the
Unix shell does: it instantiates a new process for each part of its pipeline.

But there is also another possibility: instead of assembling the whole pipeline in advance, do it in steps.

Start by adding this option in every binding:

withTray => 1,

Thiswill make all the bindings collect the result on atray instead of sending it on immediately. Then modify the main loop:

whi | e(<STDI N>) {
chonp;

receive
ny $abReceive = Triceps:: Aut oFnBi nd- >new(
$ret Recei ve => $bi ndDecrypt,
);
$uni t - >makeArrayCal | ($l bRecei ve, "OP_I NSERT", $_);

1st decrypt
ny $abDecryptl = Triceps: : Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDecrypt,

)
$bi ndDecrypt ->cal | Tray();

2nd decrypt

ny $abDecrypt2 = Tri ceps: : Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDi spat ch,

)
$bi ndDecrypt ->cal | Tray();

processing

ny $abProcess = Triceps: : Aut oFnBi nd- >new(
$ret Qut put => $bi ndEncrypt,

)

Streaming functions and recursion 269

$bi ndDi spat ch->cal | Tray();

1st encrypt
ny $abEncryptl = Tri ceps: : Aut oFnBi nd- >new(
$ret Encrypt => $bi ndEncrypt,

)
$bi ndEncrypt ->cal | Tray();

2nd encrypt
ny $abEncrypt2 = Tri ceps: : Aut oFnBi nd- >new(
$ret Encrypt => $bi ndSend,

)
$bi ndEncrypt ->cal | Tray();

send
$bi ndSend- >cal | Tray() ;

}

Here I've dropped the encrypted-or-unencrypted choice to save the space, the datais always encrypted twice. Thedr ai n-
Frame() cal has been dropped because with the way the function calls work here there is no chance that it could be
useful. The rest of the code stays the same.

The bindings have been split in stages. The next binding is set in each stage, and the data from the previous binding gets
sent into it. The binding method cal | Tray() replaces the tray in the binding with an empty one, and then calls all the
rowops collected on the old tray (and if you wonder what then happens to the old tray, it gets discarded). Because of this
the first decryption stage with binding

ny $abDecryptl = Triceps:: Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDecrypt,
);

doesn't send the data circling forever. It just does one pass through the decryption and prepares for the second pass.

Every time Aut oFnBi nd- >new() runs, it doesn't replace the binding of the FnReturn but pushes anew binding onto the
FnReturn's stack. Each FnReturn has its own stack of bindings (this way it's easier to manage than a single stack). When
an AutoFnBind gets destroyed, it pops the binding from the return's stack. And yes, if you specify multiple bindingsin one
AutoFnBind, all of them get pushed on construction and popped on destruction. In this case al the auto-binds are in the
same block, so they will al be destroyed at the end of block in the opposite order. Which meansthat in effect the code is
equivalent to the nested blocks. And the version with explicit nexted blocks might be easier for you to think of:

whi | e(<STDI N>) {
chonp;

receive
ny $abReceive = Triceps:: Aut oFnBi nd- >new(
$r et Recei ve => $bi ndDecrypt,
)
$uni t - >makeArrayCal | ($l bRecei ve, "OP_I NSERT", $_);

{
1st decrypt

ny $abDecryptl = Triceps:: Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDecrypt,

)
$bi ndDecrypt ->cal | Tray();

{
2nd decrypt

ny $abDecryptl = Tri ceps:: Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDi spat ch,

270 Streaming functions

)
$bi ndDecrypt ->cal | Tray();

{

processing
ny $abProcess = Triceps: : Aut oFnBi nd- >new(
$ret Qut put => $bi ndEncrypt,

)
$bi ndDi spat ch->cal | Tray();

{

1st encrypt

ny $abEncryptl = Triceps: : Aut oFnBi nd- >new(
$ret Encrypt => $bi ndEncrypt,

)

$bi ndEncrypt ->cal | Tray();

{
2nd encrypt
ny $abEncryptl = Tri ceps: : Aut oFnBi nd- >new(

$ret Encrypt => $bi ndSend,

)
$bi ndEncrypt ->cal | Tray();
send
$bi ndSend- >cal | Tray() ;

}

}
}
}
}
}

An interesting consegquence of all this nesting, pushing and popping is that you can put the inner calls into the procedural
loopsif you wish. For example, if you want to process every input line thrice:

whi | e(<STDI N>) {
chonp;

receive

ny $abReceive = Triceps:: Aut oFnBi nd- >new(
$r et Recei ve => $bi ndDecrypt,

)

for (my $i =0; $i < 3; $i++) {
$uni t - >makeAr rayCal | ($l bRecei ve, "OP_I NSERT", $_);

{
1st decrypt

ny $abDecryptl = Triceps: : Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDecrypt,

)
$bi ndDecrypt ->cal | Tray();

{
2nd decrypt

ny $abDecryptl = Triceps: : Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDi spat ch,

)
$bi ndDecrypt ->cal | Tray();

{

Streaming functions and recursion 271

processing
ny $abProcess = Triceps: : Aut oFnBi nd- >new(
$ret Qut put => $bi ndEncrypt,

)
$bi ndDi spat ch->cal | Tray();

{
1st encrypt

ny $abEncryptl = Tri ceps: : Aut oFnBi nd- >new(
$ret Encrypt => $bi ndEncrypt,

)
$bi ndEncrypt ->cal | Tray();

{
2nd encrypt

ny $abEncryptl = Tri ceps:: Aut oFnBi nd- >new(
$ret Encrypt => $bi ndSend,

)
$bi ndEncrypt ->cal | Tray();

send
$bi ndSend- >cal | Tray() ;

Thiscodewill run thewhol e pipeline threetimesfor each input line, and print out three output lines. The following example
of the output has both the input and the output lines wrapped, since they are hugely long:

363936653633326334663530356634393465353334353532353432633631363236
3332633332

373236353733373536633734323034663530356634393465353334353532353432
3036653631366436353364323236313632363332323230363336663735366537
3433643232333332323230

373236353733373536633734323034663530356634393465353334353532353432
3036653631366436353364323236313632363332323230363336663735366537
3433643232333332323230

373236353733373536633734323034663530356634393465353334353532353432
3036653631366436353364323236313632363332323230363336663735366537
3433643232333332323230

If you wonder, what is the meaning of these lines, they are the same as before. Theinput is:
i nc, OP_I NSERT, abc, 2
And each line of output is:

result OP_I NSERT name="abc" count="3"

| suppose, it would be more entertaining if the processing weren't just incrementing avaluein theinput databut incrementing
some static counter, then the three output lines would be different.

However thisis not the only way to do the block nesting. The contents of the FnBinding's tray is not affected in any way
by the binding being pushed or popped. It stays there throughout, until it's explicitly flushed by cal | Tray() . Soit could
use the blocks formed in a more pipeline-like fashion (as opposed to the more function-call-like fashion shown before):

whi | e(<STDI N>) {

272 Streaming functions

chonp;
receive
{

ny $abReceive = Triceps:: Aut oFnBi nd- >new(
$r et Recei ve => $bi ndDecrypt,
)
$uni t - >makeArrayCal | ($l bRecei ve, "OP_I NSERT", $_);

}
1st decrypt
{
ny $abDecryptl = Triceps: : Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDecrypt,
)
$bi ndDecrypt ->cal | Tray();
}
2nd decrypt
{
ny $abDecryptl = Triceps:: Aut oFnBi nd- >new(
$ret Decrypt => $bi ndDi spat ch,
)
$bi ndDecrypt ->cal | Tray();
}
processing
{
ny $abProcess = Triceps: : Aut oFnBi nd- >new(
$ret Qut put => $bi ndEncrypt,
)
$bi ndDi spat ch->cal | Tray();
}
1st encrypt
{
ny $abEncryptl = Tri ceps: : Aut oFnBi nd- >new(
$ret Encrypt => $bi ndEncrypt,
)
$bi ndEncrypt ->cal | Tray();
}
2nd encrypt
{
ny $abEncryptl = Triceps: : Aut oFnBi nd- >new(
$ret Encrypt => $bi ndSend,
)
$bi ndEncrypt ->cal | Tray();
}
send
$bi ndSend- >cal | Tray() ;

}

After each stage, its binding is popped but the tray is carried through to the next stage.

Which way of blocking is better? I'd say they're pretty equivalent in functionality, and your preference would depend on
what style you prefer to express.

15.10. Streaming functions and more recursion

Streaming functions and more recursion 273

There are great many dlightly different ways to use recursion with the streaming functions. This section goes through them
with examples of the Fibonacci numbers computed in all these ways. Y ou can as well skip over this section if you're not
particularly interested in the details of recursive execution.

All the examples from this section (and most of others from this chapter) arelocatesint / xFn. t . The first example uses
the dumb recursive calls. It's areal dumb recursive way, with two recursive calls and thus the exponential execution time,
just to show how they can be done. This simplest and most straightforward way goes as follows:

ny $uFib = Triceps::Unit->new("uFib");
$uFi b- >set MaxRecur si onDept h(100) ;

Type the data going into the function
ny $rtFibArg = Triceps:: RowType- >new(
idx => "int32", # the index of Fibonacci nunber to generate

)

Type of the function result

ny $rtFi bRes = Triceps:: RowType- >new(

idx => "int32", # the index of Fibonacci nunber
fib =>"int64", # the generated Fi bonacci nunber

)

Hit#
A streaning function that conputes a Fi bonacci nunber.

I nput :

$l bFi bConpute: request to conpute the nunber.
Qut put (by FnReturn | abels):

"result": the conputed val ue
The opcode is preserved through the conputation.

H O HHH

ny $frFib = Triceps::FnRet urn->new
name => "Fi b",
unit => $uFi b,
| abels => [
result => $rtFi bRes
1.
);

ny $l bFi bResult = $frFi b->getLabel ("result");

ny $l bFi bConpute; # nust be defined before assignnent, for recursion
$| bFi bConput e = $uFi b- >nakelLabel ($rtFi bArg, "Fi bConpute", undef, sub {
ny $row = $_[1]->get Row();
ny $op = $_[1] ->get Opcode();
nmy $idx = $row >get ("idx");
ny $res;

if ($idx < 1) {
$res = 0;
} elsif($idx == 1) {
$res = 1;
} else {
ny ($prevl, S$prev2);
Triceps:: FnBi nding: :call(
name => "Fi bConpute.call 1",

on => $frFib,
unit => $uFi b,
| abels => [

result => sub {

274 Streaming functions

$prevl = $_[1]->get Rom)->get ("fib");
}
1.
rowop => $I| bFi bConput e- >makeRowopHash($op,
idx => $idx - 1,
),
);
Triceps:: FnBi nding: :call(
name => "Fi bConpute. call 2",

on => $frFib,
unit => $uFi b,
| abels => [

result => sub {
$prev2 = $ [1] - >get Row() - >get ("fib");
}
1,
rowop => $| bFi bConput e- >nakeRowopHash($op,
idx => $idx - 2,
)
)
$res = $prevl + $prev2;

}
$uFi b- >makeHashCal | ($f r Fi b- >get Label ("result"), $op,
idx => $idx,
fib => $res,
)
1)

End of streami ng function
Hit#

binding to call the Fibonacci function and print the result
ny $f bFi bCall = Triceps:: FnBi ndi ng- >new(
nane => "FibCall",
on => $frFib,
unit => $uFi b,
| abels => [
result => sub {
ny $row = $_[1]->get Row();
print($row >get("fib"), "

is Fibonacci nunber ", $row >get("idx"), "\n");

1.
)

whi | e(<STDI N>) {
chonp;
ny @ata = split(/,/);
$uFi b- >cal | Bound(
$| bFi bConput e- >nakeRowopAr r ay(@lat a) ,
$frFi b => $fbFi bCal |,
)
$uFi b->drai nFrane(); # just in case, for conpleteness

}

The calling sequence had become different than in the looping version but the produced result is exactly the same. The
streaming function now receives an argument row and produces a result row. The unit's recursion depth limit had to be
adjusted to permit the recursion.

Therecursive callsaredonethroughthe FnBi ndi ng: : cal | (), withaclosurefor theresult handling label. That closure
can access the scope of its creator and place the result into its local variable. After both intermediate results are computed,
the final result computation takes place and sends out the result row.

Streaming functions and more recursion 275

The FnBi ndi ng: : cal | () creates a brand new binding for each call. So no matter how deep is the recursion, each
function call will get a separate binding that knows how to put the results into the correct place.

If the streaming function were to return more than one rowop, the closure would have to collect them all into a variable.
The further processing can not be done until the function completes. The bindings with trays cannot be used because
FnBi ndi ng: : cal | () disposesof thebinding beforeit returns, so thereisno chanceto extract thetray from the binding.
Perhaps this can be improved in the future. But there is another way to use trays that will be shown below.

And just to show yet another technique, the main loop is also different: instead of creating an AutoFnBind manually, it
uses the Unit's method cal | Bound() that is more compact to write and dightly more efficient. It's a great method if
you have al the rowops for the call available upfront. It's first argument is arowop or atray or areference to an array of
rowops. Therest are the pairs of FnReturns and FnBindings. The bindings are pushed onto the FnReturns, then the rowops
are called, then the bindings are popped. It replaces a whole block that would contain an AutoFnBind and the calls.

FnBi ndi ng: cal | () with closures is easy to use but it creates a closure and an FnBinding object on each run. Can
things be rearranged to reuse the same objects? With some effort, they can:

Hit#
A streaning function that conputes a Fi bonacci nunber.

I nput :

$l bFi bConpute: request to conpute the nunber.
Qut put (by FnReturn | abels):

"result": the conputed val ue.
The opcode is preserved through the conputation.

H O HHH

ny @tackFib; # stack of the function states
ny $stateFib; # The current state

ny $frFib = Triceps::FnRet urn->new
name => "Fi b",
unit => $uFi b,
| abels => [
result => $rtFibRes,
1,
onPush => sub { push @tackFib, $stateFib; $stateFib ={ }; },
onPop => sub { $stateFib = pop @tackFib; },
)

ny $l bFi bResult = $frFi b->getLabel ("result");

Declare the | abel & binding variables in advance, to define them sequentially.
ny ($! bFi bConpute, $fbFibPrevl, $fbFibPrev2);
$| bFi bConput e = $uFi b- >nakelLabel ($rtFi bArg, "Fi bConpute", undef, sub {

ny $row = $_[1]->get Row();

ny $op = $_[1]->get Opcode();

ny $idx = $row >get ("idx");

if ($idx <=1) {
$uFi b- >makeHashCal | ($fr Fi b- >get Label ("result"), $op,
idx => $idx,
fib=>%$idx <1?20: 1,
)
} else {
$st at eFi b->{op} = $op;
$st at eFi b->{i dx} = $idx;

$f r Fi b- >push($f bFi bPrevl);

$uFi b- >makeHashCal | ($l bFi bConmput e, $op,
idx => $idx - 1,

)

276 Streaming functions

}
1)
$f bFi bPrevl = Triceps:: FnBi ndi ng- >new(
unit => $uFi b,
nane => "Fi bPrevl",
on => $frFib,
| abels => [
result => sub {
$f r Fi b- >pop($f bFi bPrev1);

$stateFi b->{prevl} = $ [1]->get Row()->get ("fib");

nmust prepare before pushing new state and with it new $stateFi b
ny $rop = $I bFi bConput e- >nakeRowopHash($st at eFi b- >{ op},

idx => S$stateFi b->{idx} - 2,

);

$f r Fi b- >push($f bFi bPrev2);
$uFi b->cal | ($rop);
}
1.
);
$f bFi bPrev2 = Triceps:: FnBi ndi ng- >new(
unit => $uFi b,
on => $frFib,
nane => "Fi bPrev2",
| abels => [
result => sub {
$f r Fi b- >pop($f bFi bPrev?2);

$stateFi b->{prev2} = $ [1]->get Row()->get ("fib");

$uFi b- >makeHashCal | ($fr Fi b- >get Label ("result"), $stateFi b->{op},
i dx => S$stateFib->{idx},
fib => $stateFi b->{prevl} + $stateFi b->{prev2},

)

},
1,
)

End of stream ng function
Hit#

Therest of the code stays the same, so | won't copy it here.

The computation still needs to keep the intermediate results of two recursive calls. With no closures, these results have to
be kept in aglobal object $st at eFi b (which refers to a hash that kegps multiple values).

But it can't just be a single object! The recursive calls would overwrite it. So it has to be built into a stack of objects, a
new one pushed for each call and popped after it. This pushing and popping can be tied to the pushing and popping of the
bindings on an FnReturn. When the FnReturn is defined, the options “onPush” and “onPop” define the custom Perl code
to execute, which is used here for the management of the state stack.

The whole logic is then split into the sections around the calls:
» beforethefirst call;

* between the first and second call;

* after the second call.

The first section goes asanormal label and the rest are done as bindings.

Streaming functions and more recursion 277

A tricky moment isthat a simple scoped AutoFnBind can't be used here. The pushing of the binding happensin the calling
label (such as FibCompute) but then the result is processed in another label (such as FibPrevl.result). The procedural
control won't return to FibCompute until after FibPrevl.result has been completed. But FibPrevl.result needs the state
popped before it can do its work! So the pushing and popping of the binding is done explicitly in two split steps: push()

called in FibCompute and pop() called in FibPrevl.result. And of course then after FibPrevl.result saves the result, it
pushes the next binding, which then gets popped in FibPrev2.result.

The popping can also be done without arguments, as simply pop() , but if it's given an argument, it will check that the
binding popped is the same asits argument. Thisis helpful for detecting the call stack corruptions.

Now, can you guess, what depth of the unit call stack is required to compute and print the 2nd Fibonacci number? It's 7.
If the tracing is enabled, it will produce this trace:

unit 'uFib' before |abel 'FibConpute' op OP_DELETE ({

unit 'uFib' before |abel 'FibConpute' op OP_DELETE ({

unit 'uFib' before label 'Fib.result' op OP_DELETE ({

unit 'uFib' before |abel 'FibPrevl.result' (chain 'Fib.result') op
OP_DELETE {

unit 'uFib' before |abel 'FibConpute' op OP_DELETE ({

unit 'uFib' before label 'Fib.result' op OP_DELETE ({

unit 'uFib' before |abel 'FibPrev2.result' (chain 'Fib.result') op
OP_DELETE {

unit 'uFib' before label 'Fib.result' op OP_DELETE ({

unit 'uFib' before label '"FibCall.result' (chain 'Fib.result') op
OP_DELETE {

unit 'uFib' after label 'FibCall.result' (chain 'Fib.result') op
OP_DELETE }

unit 'uFib' after label 'Fib.result' op OP_DELETE }

unit 'uFib' after |abel 'FibPrev2.result' (chain '"Fib.result') op
OP_DELETE }

unit 'uFib' after label 'Fib.result' op OP_DELETE }

unit 'uFib' after |abel 'FibConpute' op OP_DELETE }

unit 'uFib' after label 'FibPrevl.result' (chain '"Fib.result') op
OP_DELETE }

unit 'uFib' after label 'Fib.result' op OP_DELETE }

unit 'uFib' after |abel 'FibConpute' op OP_DELETE }

unit 'uFib' after |abel 'FibConpute' op OP_DELETE }

9 labels get called in a sequence, al the way from theinitial call to the result printing. And only then the whole sequence
unrolls back. 3 of them are chained through the bindings, so they don't push the stack frames onto the stack, and there is
always the outermost stack frame, with the resulting stack depth of 9-3+1 = 7. This number grows fast. For the 6th number
the number of labels becomes 75 and the frame count 51.

It happensbecauseall thecallsget unrolledinto asingle sequence, likewhat I'vewarned against in Section 7.7: “ Topol ogical
loops” (p. 46) . The function return does unroll its FnReturn stack but doesn't unroll the unit call stack, it just goes even
deeper by calling the label that processesit.

There are ways to improve it. The simplest one is to use the FnBinding with a tray, and call this tray after the function
completely returns. Thisworks out quite conveniently in two other waystoo: First, AutoFnBind with its scoped approach
can be used again. And second, it allows to handle the situations where a function returns not just one row but multiple
of them. That will be the next example:

Hit#
A streaning function that conputes a Fi bonacci nunber.

I nput :

$l bFi bConpute: request to conpute the nunber.
Qut put (by FnReturn | abels):

"result": the conputed val ue
The opcode is preserved through the conputation.

H O HHH

278 Streaming functions

ny @tackFib; # stack of the function states
ny $stateFib; # The current state

ny $frFib = Triceps::FnRet urn->new
name => "Fi b",
unit => $uFi b,
| abels => [
result => $rtFibRes,

1

onPush => sub { push @tackFib, $stateFib; $stateFib ={ }; },

onPop => sub { $stateFib = pop @tackFib; },
)

ny $l bFi bResult = $frFi b->getLabel ("result");

Declare the | abel & binding variables in advance,
ny ($l bFi bConpute, $fbFi bPrevl, $fbFibPrev2);

to define them sequentially.

$| bFi bConput e = $uFi b- >nakelLabel ($rtFi bArg, "Fi bConpute", undef, sub {

ny $row = $_[1]->get Row();
ny $op = $_[1] ->get Opcode();
nmy $idx = $row >get ("idx");

if ($idx <= 1) {
$uFi b- >makeHashCal | ($fr Fi b- >get Label ("result"),
idx => $idx,
fib=%$idxk <1?20: 1,
)
} else {
$st at eFi b->{op} = $op;
$st at eFi b->{i dx} = $idx;

{
ny $ab = Triceps: : Aut oFnBi nd- >new(
$frFib => $f bFi bPrevl
)
$uFi b- >makeHashCal | ($l bFi bConput e, $op,
idx => $idx - 1,
)

}
$f bFi bPrevl->cal |l Tray();

}
1)
$f bFi bPrevl = Triceps:: FnBi ndi ng- >new(
unit => $uFi b,
nane => "Fi bPrevl",
on => $frFib,
withTray => 1,
| abels => [
result => sub {

$op,

$stateFi b->{prevl} = $ [1]->get Row()->get ("fib");

nmust prepare before pushing new state and with it new $stateFi b
ny $rop = $I bFi bConput e- >nakeRowopHash($st at eFi b- >{ op},

idx => $stateFi b->{idx} - 2,
)

{
ny $ab = Triceps: : Aut oFnBi nd- >new(
$frFib => $f bFi bPrev2
)
$uFi b->cal | ($rop);

Streaming functions and more recursion

279

}
$f bFi bPrev2->cal | Tray();
},
1,
)
$f bFi bPrev2 = Triceps:: FnBi ndi ng- >new
unit => $uFi b,
on => $frFib,
nanme => "Fi bPrev2",
withTray => 1,
| abels => [
result => sub {
$stateFi b->{prev2} = $ [1]->get Row()->get ("fib");
$uFi b- >makeHashCal | ($fr Fi b- >get Label ("result"), $stateFi b->{op},
i dx => S$stateFib->{idx},
fib => $stateFi b->{prevl} + $stateFi b->{prev2},
)
},
1,
)

End of stream ng function
Hit#

The stack depth is now greatly reduced because the unit stack pops the frames before pushing more of them. For the 2nd
Fibonacci number the traceiis:

unit 'uFib' before | abel 'FibConpute' op OP_DELETE {

unit 'uFib' before | abel 'FibConpute' op OP_DELETE {

unit 'uFib' before label 'Fib.result' op OP_DELETE {

unit 'uFib' after label 'Fib.result' op OP_DELETE }

unit 'uFib' after |abel 'FibConpute' op OP_DELETE }

unit 'uFib' before |label 'FibPrevl.result' op OP_DELETE {

unit 'uFib' before | abel 'FibConpute' op OP_DELETE {

unit 'uFib' before label 'Fib.result' op OP_DELETE {

unit 'uFib' after label 'Fib.result' op OP_DELETE }

unit 'uFib' after |abel 'FibConpute' op OP_DELETE }

unit 'uFib' before |abel 'FibPrev2.result' op OP_DELETE {

unit 'uFib' before label '"Fib.result' op OP_DELETE {

unit 'uFib' before label "FibCall.result' (chain "Fib.result') op
OP_DELETE {

unit 'uFib' after label '"FibCall.result' (chain 'Fib.result') op

OP_DELETE }

unit 'uFib' after label 'Fib.result' op OP_DELETE }

unit 'uFib' after label 'FibPrev2.result' op OP_DELETE }

unit 'uFib' after label 'FibPrevl.result' op OP_DELETE }

unit 'uFib' after |abel 'FibConpute' op OP_DELETE }

The maximal call stack depth is reduced to 5. For the 6th number the maximal required stack depth now gets reduced to
only 9 instead of 51.

And there is also a way to run the recursive calls without even the need to increase the recursion depth limit. It can be
left at the default 1, without set MaxRecur si onDept h() . The secret isto fork the argument rowops to the functions
instead of calling them.

Hit#
A streaning function that conputes a Fi bonacci nunber.

| nput:

$I bFi bComput e: request to conpute the nunber.
Qut put (by FnReturn | abels):

"result": the conputed val ue

280 Streaming functions

The opcode is preserved through the conputation.

ny @tackFib; # stack of the function states
ny $stateFib; # The current state

ny $frFib = Triceps::FnRet ur n- >new
name => "Fi b",
unit => $uFi b,
| abels => [
result => $rtFibRes,
1,
onPush => sub { push @tackFib, $stateFib; $stateFib ={ }; },
onPop => sub { $stateFib = pop @tackFib; },
)

ny $l bFi bResult = $frFi b->getLabel ("result");

Declare the | abel & binding variables in advance, to define them sequentially.
ny ($! bFi bConpute, $fbFibPrevl, $fbFibPrev2);
$| bFi bConput e = $uFi b- >nakelLabel ($rtFi bArg, "Fi bConpute", undef, sub {

ny $row = $_[1]->get Row();

ny $op = $_[1]->get Opcode();

ny $idx = $row >get ("idx");

if ($idx <=1) {
$uFi b- >f or k($f r Fi b- >get Label ("resul t") - >nakeRowopHash($op,
idx => $idx,
fib=%$idxk <1?20: 1,
));
} else {
$st at eFi b->{op} = $op;
$st at eFi b->{i dx} = $idx;

$f r Fi b- >push($f bFi bPrevl);
$uFi b- >f or k($! bFi bConput e- >makeRowopHash($op,
idx => $idx - 1,
));
}
1)
$f bFi bPrevl = Triceps:: FnBi ndi ng- >new
unit => $uFi b,
name => "Fi bPrev1",
on => $frFib,
| abels => [
result => sub {
$f r Fi b- >pop($f bFi bPrev1);

$stateFi b->{prevl} = $ [1]->get Row()->get ("fib");

nmust prepare before pushing new state and with it new $stateFi b
ny $rop = $I bFi bConput e- >nakeRowopHash($st at eFi b- >{ op},

idx => $stateFi b->{idx} - 2,

);

$f r Fi b- >push($f bFi bPrev2);
$uFi b- >f or k($rop);
b
1
);
$f bFi bPrev2 = Triceps:: FnBi ndi ng- >new(
unit => $uFi b,

Streaming functions and more recursion 281

on => $frFib,
nanme => "Fi bPrev2",
| abels => [
result => sub {
$f r Fi b- >pop($f bFi bPrev?2);

$stateFi b->{prev2} = $ [1]->get Row()->get ("fib");

$uFi b- >f or k($f r Fi b- >get Label ("resul t") - >nmakeRowopHash($st at eFi b- >{ op},
i dx => S$stateFib->{idx},
fib => $stateFi b->{prevl} + $stateFi b->{prev2},

));

},
1,
)

End of stream ng function
Hit#

Thisisavariation of the pre-previous example, with the split push and pop. The split isrequired for the fork to work: when
the forked rowop executes, the calling label has aready returned, so obviously the scoped approach won't work.

In this version the unit stack depth required to compute the 6th (and any) Fibonacci number reduces to 2: it's really only
one level on top of the outermost frame.

If you were to attempt taking the advantage of the techniques from both of the last two examples (the one with the trays
and the one with the forks) at the same time, that combination won't work. They could be combined but the combination
just doesn't work right.

The problem isthat the example with trays relies on the recursive function being completed before the tray gets called. But
if the recursive functions are forked, things break. Looking at why they break provides another insight into the works of
recursion. The example would look approximately like this in pseudo-code:

Comput e:
if (idx <=1) {
call FrFib Result;
} else {
push Fi bPrevl to FrFib;
fork Conpute for n-1;
fork Fol | owupil;

}

Fol | owupl:
fork tray of FibPrevil;

Fi bPrevl.resul t:
pop Fi bPrevl from FrFib;
push Fi bPrev2 to FrFib;
fork Conpute for n-2;
fork Fol |l owup2;

Fol | owup2:
fork tray of FibPrev2;

Fi bPrev2.resul t:
pop Fi bPrev2 from FrFib;
call FrFib Result;

The Followup labels are required because the trays with the intermediate results won't call themselves. They need to be
called (or inthiscase, forked) by something else. The FnBinding hasno method f or kTr ay() but it can be done manually
by first swapping the tray and then forking the result. The result FnReturn has to be called, not forked, so that it would
immediately deposit the result rowop into the bound tray.

282 Streaming functions

If there were only one recursive call, it would still work because the execution frame after the label Conput e(n) returns
would then look like this:

Conput e(n-1)
Fol | owmup1(n)

The rowop Conput e(n- 1) would be the argument for the recursive function cal, and Fol | owup1(n) would be the
follow-up rowop. When the execution time comes, the rowop Conput e(n- 1) executes, places the result into the tray.
Then the rowop Fol | owmup1(n) executes and forks the tray, with the next rowop Fi bPrevl. resul t (n) then exe-
cuting in order. So far so good.

Now let's trace the recursion to the depth of two. Thefirst level starts the same:

Conput e(n-1)
Fol | owup1(n)

Then Conput e(n- 1) executes and forks the second level of recursion, the frame becoming:

Fol | omupl(n)
Conput e(n-1-1)
Fol | omupl(n-1)

Do you see what went wrong? The unit execution frames are FIFO. So the second level of recursion got queued after the
follow-up of thefirst level. That rowop Fol | owup1(n) executesnext, doesn't get any return values, and everything goes
downhill from there.

15.11. Streaming functions and unit boundaries

One of the examples-as-future-standard-modules I've come up with, isTQL: the Triceps Trivial Query Language (or should
that be TTQL ?) along with aserver to executeit. A TQL server iskind of like the Sybase or StreamBase CEP server inthe
way that it encapsulates the CEP logic, handles the client network connections with inputs and outputs, and also lets the
clients define the ad-hoc queries against the tables of both the one-time and streaming varieties. The ad-hoc capabilities of
TQL are probably better than those of Sybase and StreamBase, at least comparing to the last time I've looked at them up
close. TQL will be described in detail in Chapter 17: “TQL, Triceps Trivial Query Languagé (p. 335) but right now

| want to look at only one aspect of itsimplementation.

When you're building the execution model of an ad-hoc query, you'd obviously need to take it apart after itswork is done.
The easy way to do so is by building it in its own unit. Then this unit can be disposed of as, well, a unit, and guarantee
that nothing will leak. By the way, that is the answer to the question of why would someone want to use multiple units
in the same thread: for modular disposal. So far so good, but it means that the data sources in the “main” unit need to be
connected with the processing labels in the units of the ad-hoc queries.

But the labels in the main unit and the query unit can't be directly connected. A direct connection would create the stable
references, and the disposal won't work. That's where the streaming function interface comes to the rescue: it provides a
temporary connection. Build the query unit, build a binding for it, push the binding onto the FnReturn of the main unit,
run the query, pop the binding, dispose of the query unit.

And the special capacity (or if you will, superpower) of the streaming functions that allows all that is that the FnReturn
and FnBinding don't have to be of the same unit. They may be of the different units and will still work together fine.

TQL was really developed as a showcase of this feature but it has gained alife of its own and | don't want to go into all
details here. Instead lets have a high-level overview and then dive straight into the part that uses the streaming functions.

To start a TQL server, you build a Triceps model as usual, and then create an object of class Triceps::X::Tql using the
endpoints of that model (inputs, outputs, queryable tables) as arguments. After that the object runs the server and handles
the clients until it's asked to stop.

The TQL queries are pipelines. Y ou read the data from atable, then select, project, join (in any order, and possibly repeat-
edly) and eventually print the result (that is, send it back to the client over the socket).

Streaming functions and unit boundaries 283

The reading from a table is done through its dump label. When the Tql object is created, it builds an FnReturn with the
dump labels of all thetablesgiventoit. When an ad-hoc query iscreated, itshead of the pipeline gets amatching FnBinding
that is then pushed onto the FnReturn, the table gets dumped and flows through the binding into the query.

Now let's take alook at the code. I'll be skipping over the code that is less interesting, you can find the full version in the
sourcecodeinl i b/ Tri ceps/ X/ Tql . pmasaways. The constructor isone of these thingsto be skipped. Theinitializa-
tion part is more interesting. I've cut out the part that supports the multi-threaded logic, and the remaining single-threaded
version goes as follows:

sub initialize # ($self)

{
ny $mynane = "Triceps:: X :Tql::initialize";
ny $self = shift;

return if ($self->{initialized});

ny $owner = $sel f->{tri eadOmner};
if (defined $owner) ({

... multithreaded version ...
} else {

nmy %li spat ch;

nmy @ abels;
for (nmy $i = 0; $i <= $#{$self->{tables}}; $i++) {
ny $name = $sel f->{tabl eNames}[$i];

ny $table = $sel f->{tables}[$i];

confess "$nmynane: found a duplicate table name '$nanme’', all nanes are:

join(", ", @%self->{tabl eNanes}})
if (exists $dispatch{$nane});

$di spat ch{$nanme} = $tabl e;
push @ abel s, $nane, $tabl e->get DunpLabel ();
}

$sel f->{di spatch} = \%li spatch;
$sel f->{fret} = Triceps::FnReturn->new
name => $sel f->{nane} . ".fret",
| abel s => \ @ abel s,
);
}

$self->{initialized} = 1;
}

It creates a dispatch hash of name-to-table and also an FnReturn that contains the dump labels of all the tables.

The method conpi | eQuer y() then handles the creation of the separate unit with its contents (“facet” is aterm from
the multithreading support, just ignore it for now):

The common query conpilation for the single-threaded and nulti-threaded versions.
#

The options are:

#

#qid => $id

(optional) The query id that will be used to report any service information
such as errors, end of dunp portion and such.

Default: ''.

#

gname => $nane

The query name that will be used as a | abel name for all the

produced data, and for the service information too.

#

284 Streaming functions

O HHHFHBFHFFHEFHEFHRFHFRFEHFFRHFFHEHFHRFFREHFEHHF R

>

nxprefix => $nane
(optional) Prefix for the created unit nane.
Default: ''.

text => $query_text
Text of the query, in the braced fornmat.

subError => \&error($id, $gnanme, $nsg, $error_code, S$error_val)
The function that will handle the error reporting. The args are
$id and $gnane as received in the options
$nsg - the full human-readabl e message
$error_code - the string identifying the error
$error_val - the particular value that caused the error

tables => { $name => $table, ... }
The tables list for the single-threaded version.
Not used with the nultithreaded version.

fretDunps => $fnReturn
The FnReturn object for dunps in the single-threaded version.
Not used with the nultithreaded version.

faCut => $facet
The facet used to send the data to the Tqgl thread.
Not used with the single-threaded version.

faRqDunmp => $f acet
The facet used to send the table dunp requests back to the app core.
Not used with the single-threaded version.

subPrint => \&print($text)
The function that prints the text back to the socket.
Not used with the single-threaded version.

@eturn - undef on error, the conpiled context object on success
(see the definition of its contents inside the function)
ub conpil eQuery # (@pts)

ny $nyname = "Triceps:: X :Tql::conpil eQuery"

ny $opts = {};
&Triceps:: Opt:: parse("chat SockWiteT", S$opts, {
gid=>1[""", undef],

gname => [undef, \&Triceps::Opt::ck_nmandatory],
nxprefix =>1["', undef],
text => [undef, \&Triceps:: Qopt::ck_mandatory],
subError => [undef, sub { &Triceps::Qpt::ck_mandatory; &Triceps::Opt::ck_ref(@,
"CODE"); } 1,
tables => [undef, sub { &Triceps::Opt::ck_ref(@, "HASH', "Triceps:: Table");
fretDumps => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::FnReturn"); }
faQut => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Facet"); } 1],
faRqDunmp => [undef, sub { &Triceps::Opt::ck_ref(@, "Triceps::Facet"); }],
subPrint => [undef, sub { &Triceps::Opt::ck_ref(@, "CODE"); }],
b @);

1
]

ny $q = $opts->{qgnane}; # the nane of the query itself

ny @nds = split_braced($opts->{text});
if ($opts->{text} ne '') {
&{ $opt s- >{subError}} ($opts->{qgid}, $g, "m smatched braces in the trailing
{text},
‘query_syntax', $opts->{text});

$opt s-

Streaming functions and unit boundaries

285

return undef;

}

The context for the conmands to build up an execution of a query.
Unlike $self, the context is created afresh for every query.

nmy $ctx = {};

$ctx->{qi d} = $opts->{qid};

$ct x- >{ gnane} = $opt s- >{gnane};

$ctx->{tabl es} = $opts->{tabl es};
$ct x->{fretDunps} = $opts->{fretDunps};
$ctx->{actions} = []; # code that will run the pipeline

$ctx->{faQut} = $opts->{faQut};
$ct x- >{ f aRqDunp} $opt s- >{f aRqDunp};
$ct x->{subPrint} $opt s- >{subPrint};
$ct x- >{request s} [T; # dunp and subscribe requests that will run the pipeline
$ctx->{copyTabl es} = []; # the tables created in this query
(have to keep references to the tables or they will disappear)

The query will be built in a separate unit

$ctx->{u} = Triceps::Unit->newm $opts->{nxprefix} . "${q}.unit");

$ctx->{prev} = undef; # will contain the output of the previous conmand in the pipeline
$ctx->{id} = 0; # a unique id for auto-generated objects

deletion of the context will cause the unit init to clean

$ct x->{cl eaner} = $ctx->{u}->nmaked earingTrigger();

if (! eval {
foreach ny $crmd (@mds) {

ny @rgs = split_braced($cnd);

ny $argv0 = bunescape(shift @rgs);

The rest of @rgs do not get unquoted here!

die "No such TQ command ' $argv0'\n" unl ess exists $tql D spatch{$argv0};

do sonething better with the errors, show the failing command. ..

$ct x->{i d} ++;

&{ $t gl Di spat ch{$argv0}}($ctx, @args);

Each conmmand nust set its result |abel (even if an undef) into

$ctx->{next}.

die "Internal error in the conmand $argv0: missing result definition\n"
unl ess (exists $ctx->{next});

$ctx->{prev} = $ctx->{next};

del ete $ctx->{next};

}

if (defined $ctx->{prev}) {
inmplicitly print the result of the pipeline, no options
&{ $t gl Di spatch{"print"}}($ctx);

}
1; # nmeans that everything went OK
H A
&{ $opt s- >{subError}} ($opts->{qgid}, $g, "query error: $@, 'bad_query', '');

return undef;

}

return $ctx;

}

Each TQL command is defined as its own method, all of them collected in the % gl Di spat ch. conpi | eQuery()
splits the pipeline and then lets each command build its part of the query, connecting them through $ct x. A command
may also register an action to be run later. After everything is built, the actions run and produce the result.

286 Streaming functions

The TQL syntax uses braces for the grouping in the pipeline. The functionsspl it _braced() andbunescape() are
imported from the package Triceps::Braced that handles the parsing of the braced nested lists. They are described in detail
in Section 19.16: “Braced reference” (p. 391) .

The option “subError” defines a function that reports the errors back to the user. Since everything is returned back as a
stream, the errors are reported as rowops on the special label “+ERROR”.

And the final part of the puzzle, hereisthe “read” command handler that creates the head of the query pipeline:

"read" command. Defines a table to read fromand starts the comuand pi peline.
Options:
table - nanme of the table to read from
sub _tgl Read # ($ctx, @args)
{
ny $ctx = shift;
die "The read comrand may not be used in the niddle of a pipeline.\n"
if (defined($ctx->{prev}));
ny $opts = {};
&Triceps:: Opt::parse("read", S$opts, {
table => [undef, \&Triceps:: Opt::ck_nandatory],
bo@);

ny $tabnanme = bunescape($opts->{table});
ny $unit = $ctx->{u};

if ($ctx->{faQut}) {

... multithreaded version ...
} else {

ny $fret = $ctx->{fretDunps};

die ("Read found no such table '$tabnane'\n")
unl ess (exists $ctx->{tabl es}{$tabnane});
ny $table = $ctx->{tabl es}{$t abnane};
ny $lab = $unit->makeDummylLabel ($t abl e- >get RowType(), "Ib" . $ctx->{id} . "read");
$ctx->{next} = $l ab;

ny $code = sub {
Triceps:: FnBi ndi ng: : cal | (
name => "bind" . $ctx->{id} . "read",
unit => $unit,
on => $fret,
| abels => [
$t abname => $l ab,
1,
code => sub {
$t abl e- >dunpAl | ();
},
)

pljsh @ $ct x->{actions}}, $code;
}
}

It's the only command that registers an action, which sends data into the query unit. The rest of commands just add more
handlers to the pipelinein the unit, and get the data that flows from “read”. The action sets up abinding and calls the table
dump, to send the datainto that binding.

The reading of the tables could have also been done without the bindings, and without the need to bind the units at al:
just iterate through the table procedurally in the action. But this whole example has been built largely to showcase that the
bindings can be used in thisway, so naturally it uses bindings.

Streaming functions and unit boundaries 287

The bindings come more useful when the query logic has to react to the normal logic of the main unit, such as in the
subscriptions: set up the query, read itsinitial state, and then keep reading as the state gets updated. But guess what, the
subscriptions can't be done with the FnReturns as shown because the FnReturn only sends its data to the last binding
pushed onto it. This means, if multiple subscriptions get set up, only the last one will be getting the data. This problem
gets solved only in the multithreaded implementation of Tql that will be discussed in Section 17.6: “Internals of a TQL
join” (p. 347) . There each client runs in its own thread, and each of its queries runs in its own unit; the inter-thread
communications are used to subscribe to the updates.

15.12. The ways to call a streaming function

The examplesin this chapter have shown many ways to call a streaming function. Here is arecap of them all:

» Manualy push the FnBinding onto the FnReturn, send the argument rowops to the streaming function, pop the FnBind-
ing.

» Use an AutoFnBind to handle the pushing and popping in a scoped fashion. A single AutoFnBind can control multiple
pairs of FnBinding and FnReturn, so it can build in one go not only a single streaming function call but even awhole
pipeline. In the C++ APl amore low-level object ScopedFnBind can aso be used in asimilar way.

e UselUnit::call Bound() that takescare of creating both the AutoFnBind object and a scope around of it in amore
efficient way.

» UseFnBi ndi ng: : cal | () tocreate an FnBinding object dynamically, do a call with it, and dispose of it.

The most convenient way depends on the situation.

15.13. The gritty details of streaming functions
scheduling

If you've read carefully about all the gritty details of scheduling, you might wonder, what exactly happens when alabel in
an FnBinding gets called through an FnReturn? The answer is, they are executed like the chained labels, reusing the frame
of the parent label (that is, of the matching label on the FnReturn side). They even show in the traces as the chained labels.
Thislets the bound labels to easily fork arowop to the frame of its parent.

The only exception is when the FnReturn and FnBinding are in the different units. Then the bound label is properly called
with its own frame in the unit where it belongs.

And of course the rowops collected in atray are another exception, since they are not called in the binding, they are only
collected. When the tray gets called, they get properly called with their own frames, just as when calling any other tray.

288 Streaming functions

Chapter 16. Multithreading

16.1. Triceps multithreading concepts

When running the CEP models, naturally the threads have to be connected by the queues for the data exchange. The use
of queuesis extremely popular but also notoriously bug-prone.

The idea of the multithreading support in Tricepsisto make writing the multithreaded model easier. To make writing the
good code easy and writing the bad code hard. But of course you don't have to use it, if it feels too constraining, you can
aways make your own.

The diagram in Figure 16.1 shows all the main elements of a multithread Triceps application.

e App

i Fragment i

: OS Thread OS Thread
Owner Owner
Triead Triead

Facet

Nexus

(direct) (reverse)

Facet

OS Thread OS Thread
Owner Owner
Triead Triead

Figure 16.1. Triceps multithreaded application.

The Triceps application is embodied in the class App. It's possible to have multiple Appsin one program.

Each thread has multiple partsto it. First, of course, thereisthe OS-level (or, technically, library-level, or Perl-level) thread
where the code executes. And then thereis a class that representsthis thread and its place in the App. To reduce the naming
conflict, thisclassis creatively named Triead (pronounced still “thread”). In the discussion | use theword “thread” for both
concepts, the OS-level thread and the Triead, and it's usually clear from the context which one | mean. But sometimesiit's
particularly important to make the distinction, and then | name one or the other explicitly.

The class Triead itself islargely opaque, allowing only afew methods for introspection. But there is a control interface to
it, caled TrieadOwner. The Triead is visible from the outside, the TrieadOwner object isvisible only in the OS thread that
owns the Triead. The TrieadOwner manages the thread state and acts as the intermediary in the thread's communications
with the App.

289

The data is passed between the threads through the Nexuses. A Nexus is unidirectional, with data going only one way,
however it may have multiple writers and multiple readers. All the readers see the exact same data, with rowops going in
the exact same order (well, there will be other policiesin the future as well, but for now there is only one policy).

A Nexus passes through the data for multiple labels, very much like an FnReturn does (and indeed there is a special
connection between them). A Nexus also allows to export the row types and table types from one thread to another.

A Nexusis created by one thread, and then the other threads connect to it. The thread that creates the Nexus determines
what labelswill it contain, and what row types and table types to export.

A Nexus gets connected to the Trieads through the Facets (in the diagram, the Facets are shown as flat spots on the round
Nexuses). A Facet is a connection point between the Nexus and the Triead. Each Facet is for either reading or writing.
And there may be only one Facet between a given Nexus and a given Triead, you can't make multiple connections between
them. Asaconsequence, athread can't both write and read to the same Nexus, it can do only one thing. This might actually
be an overly restrictive limitation and might change in the future but that's how things work now.

Each Nexus also has a direction: either direct (“downwards’) or reverse (“upwards’). How does it know, which direction
isdown and whih isup? It doesn't. You tell it by designating a Nexus one way or the other. And yes, the reverse Nexuses
allow to build the models with loops. However the loops consisting of only the direct Nexuses are not alowed, nor of only
reverse Nexuses. They would mess up the flow control. The proper loops must contain amix of direct and reverse Nexuses.

The direct Nexuses have a limited queue size and stop the writers when the queue fills up, until the data gets consumed,
thus providing the flow control. The reverse Nexuses have an unlimited queue size, which allows to avoid the circular
deadlocks. The reverse Nexuses also have a higher priority: if athread is reading from a direct Nexus and a reverse one,
with both having data available, it will read the data from the reverse Nexus first. Thisisto prevent the unlimited queues
in the reverse Nexuses from the truly unlimited growth.

Normally an App is built once and keeps running in this configuration until it stops. But there is a strong need to have the
threads dynamically added and del eted too. For example, if the App running asaserver, and clients connect toit, each client
needs to have its thread(s) added when the client connects and then deleted when the client disconnects. This is handled
through the concept of fragments. There is no Fragment class but when you create a Triead, you can specify a fragment
namefor it. Then it becomes possible to shut down and dispose the threadsin afragment after the fragment's work is done.

16.2. The Triead lifecycle

Each Triead goes through afew stagesinitslife:
* declared

* defined

* constructed

* ready

» waited ready

* requested dead

* dead

Note by the way that it's the stages of the Triead object. The OS-level thread as such doesn't know much about them, even
though these stages do have some connections to its state.

These stages always go in order and can not be skipped. However for convenience you can request a move directly to a
further stage. Thiswill just automatically pass through all the intermediate stages. Although, well, there is one exception:
the “waited ready” and “requested dead” stages can get skipped on the way to “dead”. Other than that, thereis alwaysthe

290 Multithreading

sequence, so if you find out that a Triead is dead, you can be sure that it's also declared, defined, constructed and ready.
The attempts to go to a previous stage are silently ignored.

Now, what do these stages mean?

Declared:

The App knows the name of the thread and that this thread will eventually exist. When an App is asked to find the
resources from this thread (such as Nexuses, and by the way, the Nexuses are associated with the threads that created
them) it will know to wait until thisthread becomes constructed, and then look for the resources. It closes an important
race condition: the code that defines the Triead normally runs in a new OS thread but there is no way to tell when
exactly will it run and do its work. If you had spawned a hew thread and then attempted to get a nexus from it before
it actually runs, the App would tell you that there is no such thread and fail. To get around it, you declare the thread
first and then start it. Most of the time there is no need to declare explicitly, the library code that wraps the thread
creation doesit for you.

Defined:
The Triead object has been created and connected to the App. Since this is normally done from the new OS thread,
it also implies that the thread is running and is busy about constructing the nexuses and whatever its own internal
resources.

Constructed:

The Triead had constructed and exported all the nexuses that it planned to. This means that now these nexuses can be
imported by the other threads (i.e. connected to the other threads). After this point the thread can not construct any
more nexuses. However it can keep importing the nexuses from the other threads. It'sactually agood ideato do al your
exports, mark the thread constructed, and only then start importing. This order guarantees the absence of initialization
deadlocks (which would be detected and will cause the App to be aborted). There are some specia cases when you
need to import a nexus from a thread that is not fully constructed yet, and it's possible, but requires more attention
and a specia override of the “immediate” import. This is described in more detail in Section 19.22: “TrieadOwner
reference’ (p. 410) , with the method i npor t Nexus() .

Ready:
The thread had imported all the nexusesit wanted and fully initialized all itsinternals (for example, if it needs to load
datafrom afile, it might do that before telling that it's ready). After this point no more nexuses can be imported. A fine
point isthat the other threads may still be created, and they may do their exporting and importing, but once athread is
marked asready, it's cast in bronze. And in the smple cases you don't need to worry about separating the constructed
and ready stages, just initialize everything and mark the thread as ready.

Waited ready:

Before proceeding further, the thread has to wait for all the threads in App to be ready, or it would lose data when
it tries to communicate with them. It's essentialy abarrier. Normally both the stages “ready” and “waited ready” are
advancedtowithasinglecall r eadyReady() . Withit thethread says*“|'m ready, and let me continue when everyone
isready”. After that the actual work can begin. It's still possible to create more threads after that (normally, parts of
the transient fragments), and until they all become ready, the App may temporarily become unready again, but that's
awhole separate advanced topic that will be discussed in Section 16.6: “Dynamic threads and fragments in a socket
server” (p. 306) .

Requested dead:

This is the way to request a thread to exit. Normally some control thread will decide that the App needs to exit and
will request all itsthreadsto die. The threads will get these requests, perform their last rites and exit. The threads don't
have to get this request to exit, they can aso always decide to exit on their own. When a thread is requested to die,
all the data communication with it stops. No more datawill get to it through the nexuses and any data it sends will be
discarded. It might churn allittle bit through the data in its input buffers but any results produced will be discarded.
The good practice is to make sure that all the data is drained before requesting a thread to die. Note that the nexuses
created by this thread aren't affected at all, they keep working as usual. It's the data connections between this thread
and any nexuses that get broken.

Dead:

The Triead lifecycle 291

The thread had compl eted its execution and exited. Normally you don't need to mark this explicitly. When the thread's
main function returns, the library will do it for you. Marking the thread dead also drives the harvesting of the OS
threads: the harvesting logic will perform aj oi n() (not to be confused with SQL join) of the thread and thus free
the OSresources. The dead Trieads are till visiblein the App (except for some special cases with the fragments), and
their nexuses continue working as usual (even including the special cases with the fragments), the other threads can
keep communicating through them for as long as they want.

16.3. Multithreaded pipeline

The multithreaded models are well suited for running the pipelines, so that is going to be the first example of the threads.
The full text of the example can be found int / xTr af fi cAggM . t inthe class Trafficl. It's a variation of an already
shown example, the traffic data aggregation from Section 13.2: “Periodic updates’ (p. 227) . The short recap isthat it gets
the data for each network packet going through and keeps it for some time, aggregates the data by the hour and keeps it
for alonger time, and aggregates it by the day and keeps for a longer time yet. This multi-stage computation naturally
matches the pipeline approach.

Since this new example highlights different features than the original one, I've changed it logic alittle: it updates both
the hourly and daily summaries on every packet received. And | didn't bother to implement the part with the automatic
cleaning of the old data, it doesn't add anything interesting to the pipeline works.

The pipeline topologies are quite convenient for working with the threads. The parallel computations create a possibility
of things happening in an unpredictable order and producing unpredictable results. The pipeline topology allows the par-
alelism and at the same time also keeps the data in the same predictable order, with no possibility of rows overtaking
each other.

The computation in this example is split into the following threads:
» Read the input, parse and send the data into the model.

« Storethe recent data and aggregate it by the hour.

Store the hourly data and aggregate it by the day.

e Storethedaily data.

Get the data at the end of the pipeline and print it.

The result of each aggregation gets stored in atable in the next thread, which then uses the same table for the next stage
of aggregation.

Technically, each stage only needs the data from the previous stage, but to get the updates to the printing stage (since we
want to print the origina updates, daily and hourly), they al go all the way through.

Dumping the contents of the tables al so requires some special support. Each tableislocal toitsthread and can't be accessed
from the other threads. To dump its contents, the dump request needs to be sent to its thread, which would extract the data
and send it through. There are multiple ways to deal with the dump results. One is to have a specia label for each table's
dump and propagate it to the last stage to print. If all that is needed istext, another way is to have one label that allows to
send strings is good enough, all the dumps can send the data converted to text into it, and it would go all the way through
the pipeline. For this example I've picked the last approach.

And now is time to show some code. The main part goeslike this:

Triceps:: Triead::startHere(
app => "traffic",
thread => "print",
main => \&printT,

)

292 Multithreading

Thest art Her e() createsan App and startsa Triead in the current OS thread. “Here” in the method name standsfor “in
the current OS thread”. “traffic” is the app name, “print” the thread name. This thread will be the end of the pipeline, and
it will create the rest of the threads. Thisis a convenient pattern when the results of the model need to be fed back to the
current thread, and it works out very conveniently for theunit tests. pri nt T() isthebody function of this printing thread:

sub printT # (@pts)
{
ny $opts = {};
Triceps::Opt::parse("traffic main", $opts, {@riceps::Triead::opts}, @);
ny $owner = $opts->{owner};
nmy $unit = $owner->unit();

Triceps::Triead::start(
app => $opts->{app},
thread => "read",
mai n => \ &readerT,

)

Triceps::Triead::start(
app => $opts->{app},
thread => "raw_hour",
mai n => \ & awToHour | yT,
from=> "read/ data",

)

Triceps::Triead::start(
app => $opts->{app},
thread => "hour_day",
mai n => \ &ourl yToDai | yT,
from=> "raw_hour/data",

)

Triceps::Triead::start(
app => $opts->{app},
thread => "day",
nmain => \ &toreDail yT,
from => "hour_day/ data",

)

ny $faln = $owner - >i nport Nexus(
from=> "day/data",

as => "input",

i mport => "reader",

)

$f al n- >get Label ("print")->nmakeChai ned("print", undef, sub {
print($_[1]->getRow()->get("text"));

)

for nmy $tag ("packet", "hourly", "daily") {
makePri nt Label ($tag, $fal n->get Label ($tag));

}

$owner - >r eadyReady() ;
$owner - >mai nLoop(); # all driven by the reader

}

start Here() accepts anumber of fixed options plus arbitrary options that it doesn't care about by itself but passes
through to the thread's main function, which are then the responsibility of the main function to parse. To reiterate, the
main function gets al the optionsfromthecall of st art Her e() , boththesethat st ar t Her e() parsesand thesethat it
simply passesthrough. st ar t Her e() also adds one more option onitsown: “owner” containing the TrieadOwner object
that the thread uses to communicate with the rest of the App.

Inthiscasepri nt T() doesn't have any extraoptionson itsown, it'sjust happy to get st ar t Her e() 's standard set that
it takes all together from @i ceps: : Tri ead: : opt s.

Multithreaded pipeline 293

It gets the TrieadOwner object $owner from the option appended by st ar t Her e() . Each TrieadOwner is created with
its own Unit, so the unit is obtained from it to create the thread's model in it. Incidentally, the TrieadOwner also acts as a
clearing trigger object for the Unit, so when the TrieadOwner is destroyed, it properly clears the Unit.

Then it goes and creates all the threads of the pipeline. The st art () works very much like st art Her e() , only it
actually creates a new thread and starts the main function in it. The main function can be the same whether it runs through
start () orstartHere().Thespecia catch isthat the optionsto st art () must contain only the plain Perl values,
not Triceps objects. It has to do with how Perl works with threads: it makes a copy of every value for the new thread, and
it cant's copy the XS objects, so they simply become undefined in the new thread.

All but the first thread in the pipeline have the extra option “from”: it specifies the input nexus for this thread, and each
thread creates an output nexus “data’. A nexusit named relatively to the thread that created it, so when the option “from”
says “day/data’, it's the nexus “data’ created by the thread “day”.

So, the pipeline getsall connected sequentially until eventually pri nt T() importsthenexusatitstail.i nport Nexus()
returns a Facet, which is the thread's API to the nexus. A facet looks very much like an FnReturn for most purposes, with
afew additions. It even has areal FnReturn in it, and you work with the labels of that FnReturn to get the data out of the
nexus (or to send data into the nexus). Y ou could potentially use an FnBinding with that FnReturn but the typical pattern
for reading from afacet is different: just get itslabels and chain the handling labels directly to them.

The option “as” of i npor t Nexus() givesthe name to the facet and to its same-named FnReturn (without it the facet
would be named the same as the short name of the nexus, in this case “data’). The option “import” tells whether thisthread
will be reading or writing the nexus, and in this case it's reading.

By the time the pipeline gets to the last stage, it has afew labelsin its facet:

* print -cariesthedirect text linesto print initsfield t ext , and its contents gets printed.

» dunpr q - carries the dump requests to the tables, and the printing thread doesn't care about it.
» packet - carriestheraw data about the packets.

e hour |y - carriesthe hourly summaries.

» dail y - carriesthe daily summaries.

The last three get also printed but this time as whole rows.

And after everything is connected, the thread both tellsthat it's ready and waits for all the other threads to become ready by
caling r eadyReady() . Thenitstherun time, and mai nLoop() takes care of it: it keeps reading data from the nexus
and processes it until it's told to shutdown. The shutdown will be controlled by the file reading thread at the start of the
pipeline. The processing is done by getting the rowops from the nexus and calling them on the appropriate label in the
facet, which then calls the the labels chained from it, and that gets all the rest of the thread's model running.

The reader thread drives the pipeline:

sub readerT # (@pts)
{
ny $opts = {};
Triceps::Opt::parse("traffic main", $opts, {@riceps::Triead::opts}, @);
ny $owner = $opts->{owner};
ny $unit = $owner->unit();

ny $rtPacket = Triceps:: RowType- >new(
time => "int64", # packet's tinestanp, mcroseconds
local _ip => "string", # string to nake easier to read
renote_ip => "string", # string to nake easier to read
| ocal _port => "int32",
renote_port => "int32",
bytes => "int32", # size of the packet

294 Multithreading

)

ny $rtPrint = Triceps:: RowType- >new
text => "string", # the text to print (including \n)

)

ny $rtDunprqg = Triceps:: RowlType- >new(
what => "string", # identifies, what to dunp
)

ny $faQut = $owner - >makeNexus(
name => "data"
| abels => [
packet => $rt Packet,
print => $rtPrint,
dunprqg => $rt Dunprq,
1,
import => "witer",

)

ny $l bPacket = $faQut->get Label ("packet");
ny $l bPrint = $faQut->getLabel ("print");
ny $l bDunprg = $faQut->get Label ("dunprqg");

$owner - >r eadyReady() ;

whi | e(<STDI N>) {
chonp;
print the input line, as a debuggi ng exercise
$uni t - >makeArrayCal | ($l bPrint, "OP_I NSERT", "> $_\n");

ny @lata split(/,/); # starts with a command, then string opcode
ny $type shift @lata
if ($type eq "new') {
$uni t - >makeAr rayCal | ($l bPacket, @lata);
} elsif ($type eq "dump") {
$uni t - >makeArrayCal | ($l bDunprq, "OP_I NSERT", $data[O0]);
} else {
$uni t - >makeArrayCal | ($l bPrint, "OP_I NSERT", "Unknown conmmand ' $type'\n");
}

$owner - >f l ushWiters();

}

{
drain the pipeline before shutting down
ny $ad = Triceps:: Aut oDrai n: : makeShar ed($owner) ;
$owner - >app() - >shut down() ;

}

}

It starts by creating the nexus with the initial set of the labels; for the data about the network packets, for the lines to be
printed at the end of the pipeline and for the dump requests to the tables in the other threads. It gets exported for the other
threads to import, and also imported right back into this thread, for writing. And then the setup isdone, r eadyReady ()
is called, and the processing starts.

It reads the CSV lines, splits them, makes a decision if it's a data line or dump request, and one way or the other sends it
into the nexus. The data sent to a facet doesn't get immediately forwarded to the nexus. It's collected internally in atray,
andthenf | ushWi t er s() sendsiton. Themai nLoop() showninpri nt Tcalsfl ushWiters() automatically
after every tray it processes from the input. But when reading from afile you've got to do it yourself. Of course, it's more
efficient to send through multiple rows at once, so a smarter implementation would check if multiple lines are available
from the file and send them in larger bundles.

Multithreaded pipeline 295

The last part is the shutdown. After the end of file is reached, it's time to shut down the application. Y ou can't just shut
down it right away because there still might be datain the pipeline, and if you shut it down, that datawill be lost. The right
way is to drain the pipeline first, and then do the shutdown when the app is drained. Aut oDr ai n: : makeShar ed()
creates a scoped drain: the drain request for all the threadsis started when this object is created, and the object construction
completes when the drain succeeds. When the object is destroyed, that releases the drain. So in this case the drain succeeds
and then the app gets shut down.

The shutdown causesthenmai nLoop() callsinall the other threadsto return, and thethreadsto exit. Thenst ar t Her e()
in the first thread has the specia logic in it that joins all the started threads after its own main function returns and before
it completes. After that the script continues on its way and is free to exit.

Therest of thisexample might be easier to understand by looking at an example of arunfirst. Thelinesin bold arethe copies
of theinput linesthat r eader T() readsfrom the input and sends into the pipeline, and pr i nt T() faithfully prints.

i nput . packet aretherowsthat reachthe pri nt T onthe packet label (remember, “input” is the name with which
it imports its input nexus). i nput . hour | y is the data aggregated by the hour intervals (and also by the IP addresses,
dropping the port information), and i nput . dai | y further aggregates it per day (and again per the IP addresses). The
timestamps in the hourly and daily rows are truncated to the start of the hour or day.

And the lines without any prefixes are the dumps of the table contents that again reach the pr i nt T() through the “print”
label:

new, OP_I NSERT, 1330886011000000, 1. 2. 3.4,5.6.7.8, 2000, 80, 100

i nput . packet OP_I NSERT ti nme="1330886011000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="100"

i nput. hourly OP_I NSERT ti ne="1330884000000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="100"

i nput.daily OP_INSERT tine="1330819200000000" | ocal _i p="1. 2. 3. 4"
renote_i p="5.6.7.8" bytes="100"

new, OP_| NSERT, 1330886012000000, 1. 2. 3. 4, 5. 6. 7. 8, 2000, 80, 50

i nput . packet OP_I NSERT ti nme="1330886012000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="50"

i nput. hourly OP_DELETE ti ne="1330884000000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="100"

i nput.daily OP_DELETE tine="1330819200000000" | ocal _i p="1. 2. 3. 4"
renote_i p="5.6.7.8" bytes="100"

i nput. hourly OP_I NSERT ti ne="1330884000000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="150"

i nput.daily OP_INSERT tine="1330819200000000" | ocal _i p="1. 2. 3. 4"
renote_i p="5.6.7.8" bytes="150"

new, OP_| NSERT, 1330889612000000, 1. 2. 3.4,5.6.7.8, 2000, 80, 150

i nput . packet OP_I NSERT ti nme="1330889612000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" local _port="2000" renote_port="80" bytes="150"

i nput. hourly OP_I NSERT ti ne="1330887600000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="150"

i nput.daily OP_DELETE tine="1330819200000000" | ocal _i p="1. 2. 3. 4"
renote_i p="5.6.7.8" bytes="150"

i nput.daily OP_INSERT tine="1330819200000000" | ocal _i p="1. 2. 3. 4"
renote_i p="5.6.7.8" bytes="300"

new, OP_| NSERT, 1330889811000000, 1. 2. 3.4,5.6. 7.8, 2000, 80, 300

i nput . packet OP_I NSERT ti nme="1330889811000000" | ocal _i p="1.2.3.4"
renote_i p="5.6.7.8" |ocal _port="2000" renote_port="80" bytes="300"

i nput. hourly OP_DELETE tine="1330887600000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="150"

i nput.daily OP_DELETE tine="1330819200000000" | ocal _i p="1. 2. 3. 4"
renote_i p="5.6.7.8" bytes="300"

i nput.daily OP_INSERT tine="1330819200000000" | ocal _i p="1. 2. 3. 4"
renote_i p="5.6.7.8" bytes="150"

i nput. hourly OP_I NSERT ti ne="1330887600000000" | ocal _ip="1.2.3.4"
renote_i p="5.6.7.8" bytes="450"

i nput.daily OP_DELETE tine="1330819200000000" | ocal _i p="1. 2. 3. 4"

296 Multithreading

renote_i p="5.6.7.8" bytes="150"

i nput.daily OP_INSERT tine="1330819200000000" | ocal _i p="1. 2. 3. 4"
renote_i p="5.6.7.8" bytes="600"

new, OP_I NSERT, 1330972411000000, 1. 2. 3.5,5.6. 7.9, 3000, 80, 200

i nput . packet OP_I NSERT ti ne="1330972411000000" | ocal _i p="1.2.3.5"
renote_i p="5.6.7.9" local _port="3000" renote_port="80" bytes="200"

i nput. hourly OP_I NSERT ti ne="1330970400000000" | ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" bytes="200"

i nput.daily OP_INSERT tine="1330905600000000" |ocal _ip="1.2.3.5"
renote_i p="5.6.7.9" bytes="200"

new, OP_| NSERT, 1331058811000000

i nput . packet OP_I NSERT ti ne="1331058811000000"

new, OP_| NSERT, 1331145211000000

i nput . packet OP_I NSERT ti ne="1331145211000000"

dunp, packets

time="1330886011000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="100"

time="1330886012000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="50"

time="1330889612000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="150"

time="1330889811000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
| ocal _port="2000" renote_port="80" bytes="300"

time="1330972411000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"
| ocal _port="3000" renote_port="80" bytes="200"

dunp, hourly

ti me="1330884000000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 150"

ti me="1330887600000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 450"

ti me="1330970400000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"
byt es="200"

dunp, dai |l y

time="1330819200000000" | ocal _ip="1.2.3.4" renpte_i p="5.6.7.8"
byt es=" 600"

ti me="1330905600000000" | ocal _ip="1.2.3.5" renpte_i p="5.6.7.9"
byt es="200"

Note that the order of the lines is completely nice and predictable, nothing goes out of order. Each nexus preserves the
order of the rows put into it, and the fact that there is only one writer per nexus and that every thread is fed from only
one nexus, avoids the races.

Let'slook at the thread that performs the aggregation by the hour:

conpute an hour-rounded tinestanp (in mcroseconds)
sub hourStanmp # (tine)

{
return $_[0] - ($_[0] % (1000*1000*3600));
}
sub rawToHour |l yT # (@pts)
{

ny $opts = {};
Triceps::Opt::parse("traffic main", $opts, {
@riceps::Triead::opts
from=> [undef, \&Triceps:: Opt::ck_nmandatory],
@)
ny $owner = $opts->{owner};
ny $unit = $owner->unit();

The current hour stanp that keeps bei ng updated
any aggregated data will be propagated when it is in the

Multithreaded pipeline 297

current hour (to avoid the propagation of the aggregator clearing).
ny $current Hour;

ny $faln = $owner - >i nport Nexus(
from=> $opts->{front,

as => "input",

i mport => "reader",

)

the full stats for the recent tine
ny $ttPackets = Triceps:: Tabl eType- >new($f al n- >get Label (" packet") - >get RowType())
- >addSubl ndex(" byHour ",
Triceps:: | ndexType->newPer | Sort ed("byHour", undef, sub {
return &our Stanp($_[0]->get ("time")) <=> &hourStamp($_[1]->get("tine"));
})
- >addSubl ndex(" byl P",
Triceps:: | ndexType- >newHashed(key => ["local _ip", "renote_ip"])
- >addSubl ndex(" gr oup",
Triceps:: | ndexType->newFi f o()
)
)
)

1

type for a periodic summary, used for hourly, daily etc. updates
ny $rtSunmary;

Tri ceps: : Si nmpl eAggr egat or: : nake(
tabType => $ttPackets,
name => "hourly",
idxPath => ["byHour", "bylP", "group"],
result => |
tinme period's (here hour's) start tinmestanp, m croseconds

time => "int64", "last", sub {&hourStanmp($_[0]->get("tine"));},
local _ip => "string", "last", sub {$_[0]->get("local _ip");},
renote_ip => "string", "last", sub {$_[0]->get("renote_ip");},

bytes sent in a time period, here an hour

bytes => "int64", "sunm', sub {$_[0]->get("bytes");},
1.
saveRowTypeTo => \ $rt Sunmary,
)

$tt Packets->initialize();
ny $tPackets = 3$unit->makeTabl e($tt Packets, "tPackets");

Filter the aggregator output to match the current hour.
ny $l bHourl yFiltered = $unit->nmakeDunmyLabel ($rt Sunmary, "hourlyFiltered");
$t Packet s- >get Aggr egat or Label (" hourl y") - >nmakeChai ned("hourl yFilter", undef, sub {
if ($_[1]->getRow()->get("time") == $currentHour) {
$uni t->cal | ($l bHour | yFil tered->adopt ($_[1]));
}
1

update the notion of the current hour before the table
$f al n- >get Label (" packet") - >makeChai ned(" processPackets", undef, sub {
ny $row = $_[1] ->get Row();
$current Hour = &hour St anp($row >get ("time"));
skip the tinmestanp updates wi thout data
if (defined $row >get("bytes")) {
$uni t - >cal | ($t Packet s- >get | nput Label ()->adopt ($_[1]));
}

298 Multithreading

1)

The makeNexus default option chainFront => 1 will nake
sure that the pass-through data propagates first, before the
processed dat a.
ny $faQut = $owner - >makeNexus(
name => "data"
| abels => [
$f al n- >get FnRet ur n() - >get Label Hash(),
hourly => $l bHourl yFi |l tered,
1,
import => "witer",

)
ny $l bPrint = $faQut->getLabel ("print");

the dunp request processing
$t Packet s- >get DunpLabel () - >makeChai ned(" pri nt Dunp", undef, sub {

$uni t - >makeArrayCal | ($I bPrint, "OP_I NSERT", $_[1]->getRow()->printP() . "\n");
1)
$f al n- >get Label (" dunprq") - >makeChai ned(" dunmp", undef, sub {

if ($_[1]->getRow()->get("what") eq "packets") {

$t Packet s- >dunmpAl | () ;

}

1)

$owner - >r eadyReady() ;
$owner - >mai nLoop(); # all driven by the reader

}

Thisfunctioninheritsthe optionsfrom Tr i ead: : st art () asusual and addsthe option “from” of itsown. Thisoption's
value is then used as the name of nexus to import for reading. The row types of the labels from that imported facet are
then used to create the table and aggregation.

The table and aggregation themselves are the same asin Section 13.2: “ Periodic updates’ (p. 227) , so | won't go into much
detail describing them. The only big changeisthe use of SimpleAggergator instead of amanually-built one. Thefilter logic
allows to delete the old raw data without propagation of the aggregation changes caused by it.

Then the output nexus is created. The creation passes through all the incoming data, short-circuiting the input and output,
and adds the extralabel for the aggregated output. The call $f al n- >get FnRet ur n() - >get Label Hash() pullsall
the labels and their names from the input facet, convenient for passing the data directly through to the output. Just like
an FnReturn, the Facet construction with makeNexus() has the option “chainFront” set to 1 by default, and thus when
it chains the labels from the pass-through ones, they are chained on the front. This works very nicely: this way the input
data passes through first and only then the input goes to the computational labels and produces the results that follow it
into the output facet.

The table dump is implemented after the output facet is defined because it needs the print label from that facet to send
the results to. That print label ends up with two sources of datra for it. One is the eponymous label from the input facet,
that passes the print requests from the previous stage of the pipeline. Another one is the table dump logic from this thread.
Both are fine and can be mixed together.

And after that it'sall usua r eadyReady() and mai nLoop() .

Thehour | yToDai | yT() isvery similar, so | won't even show it here, you can find the full text in the sources.

16.4. Object passing between threads

A limitation of the Perl threadsisthat no variables can be shared between them. Well, there are the special shared variables
but they're are very special and have great many limitations on their own. When a new thread gets created, it gets a copy

Object passing between threads 299

of al the variables of the parent. That is, of all the plain Perl variables. With the XS extensions your luck may vary:
the variables might get copied, might become undefined, or just become broken (if the XS module is not threads-aware).
Copying the XS variables requires a quite high overhead at all the other times, so Triceps doesn't do it and all the Triceps
object become undefined in the new thread.

Thismodel of behavior for a package is marked by creating the method CLONE_SKI P init:
sub CLONE_SKIP { 1; }
All the Triceps packages define it, and it's the best practice to define it in your packages as well.

However the threads are usel ess without communication, and Triceps provides away to pass around certain objectsthrough
the Nexuses.

First, obviously, the Nexuses are intended to pass through the Rowops. These Rowops coming out of a nexus are not the
same Rowop objects that went in. Rowop is a single-threaded object and can not be shared by two threads. Instead it gets
converted to an internal form while in the nexus, and gets re-created when it comes out, pointing to the same Row object
and to the correct Label in the local Facet.

Then, again obviously, the Facets get imported to the other threads as an interface of the Nexus, together with their row
types.

And two more types of objects can be exported through aNexus: the RowTypesand TableTypes. They get exported through
the options as in this example:

$fa = $owner - >makeNexus(
name => "nx1",

| abels => [
one => $rt1,
two => $l b,

1,

rowlypes => |
one => $rt2,
two => $rt1l,

1,

t abl eTypes => |
one => $tt1l,
two => $tt2,

1,

import => "witer",

)

Asyou can see, the namespaces for the labels, row types and table types are completely independent, and the same names
can be reused in each of them for different meaning. All the three sections are optional, so if you want, you can export
only the types in the nexus, without any labels.

They can then be extracted from the imported facet as:

$rtl
$tt1l

$f a- >i npRowType("one");
$f a- >i npTabl eType("one");

Or the whole set of name-value pairs can be obtained with:

@t set
@t set

$f a- >i npRowTypesHash() ;
$f a- >i npTabl eTypesHash() ;

The exact table types and row types (by themselves or in the table types or labels) in the importing thread will be copied.
It's technically possible to share the references to the same row type from multiple threads in the C++ code but it's more
efficient to make a separate copy for each thread, and thus the Perl API goes along the more efficient way.

The import is smart in the sense that it preserves the sameness of the row types: if in the exporting thread the same row
type wasreferred from multiple placesinthel abel s, r owTypes andt abl eTypes sections, in theimported facet that

300 Multithreading

would again be the same row type object (even though of course not the one that has been exported but its copy). This
again helps with the efficiency when various objects decide if the rows created by this and that type are matching.

Thisisall well until you want to export atable type that has an index with a Perl sort conditionin it, or an aggregator with
the Perl code. The Perl code objects are tricky: they get copied OK when anew thread is created but the attempts to import
them through a nexus later cause a terrible memory corruption. So Triceps doesn't allow to export the table types with the
function references in them. But it provides an alternative solution: the code snippets can be specified as the source code,
asdescribed in Section 4.4: “ Code references and snippets” (p. 21) . They get compiled when the table type getsinitialized.
When a table type gets imported through a nexus, it brings the source code with it. The imported table types are always
uninitialized, so at initialization time the source code gets compiled in the new thread and works.

It al works transparently: just specify a string instead of a function reference when creating the index, and it will be
recognized and processed. For example:

$it= Triceps::|ndexType->newPer| Sorted("b_c", undef,
nmy $res = ($_[0]->get("b") <=> $_[1]->get("b")
[| $_[0]->get("c") <=> $_[1]->get("c"));
return $res;

)

Before the code gets compiled, it gets wrapped intoasub { ... }, sodon't write your own sub in the code string,
that would be an error.

To recap the differences between the code references and the source code snippets format:

When you compile a function, it carries with it the lexical context. So you can make the closures that refer to the “my”
variablesin their lexical scope. With the source code you can't do this. The table type compilesthem at initialization timein
the context of the main package, and that's all they can see. Remember also that the global variables are not shared between
the threads, so if you refer to a global variable in the code snippet and rely on avalue in that variable, it won't be present
in the other threads (unless the other threads are direct descendants and the value was set before their creation).

Thereis aso the issue of arguments that can be specified for these functions. Tricepsis smart enough to handle the argu-
ments that are one of:

* undef

* integer

« floating-point

* string

» Triceps::RowType object

* Triceps::Row object

» referenceto an array or hash thereof

It converts the datato an internal C++ representation in the nexus and then converts it back on import. So, if a TableType
has all the code in it in the source form, and the arguments for this code within the limits of thisformat, it can be exported
through the nexus. Otherwise an attempt to export it will fail.

The SimpleOrderedindex uses the source code format for the functionsit generates, so they will pass through the nexuses.
And if you specify the aggregator functions as code snippets, you can export the table types with them through the nexuses
too.

However things didn't work out so well for the SimpleAggregator. I've found that | can't just do it within the current
aggregation infrastructure. As mentioned in Section 11.5:; “Optimized DELETES’ (p. 157) , the aggregators don't have the

Object passing between threads 301

same kind of initialization function as indexes (one that would run at the table type initialization time), and that becomes
the deal-breaker.

Fortunately, some thinking had showed that this feature is not really needed. There usualy just isn't any need to export a
table type with aggregators. So it's a nice feature to have overall but not urgent. Moreover, there is a need to export the
table types with many elements stripped.

What is to be stripped and why? The most central part of the table type isits primary index. It defines how the data gets
organized. And then the secondary indexes and aggregators perform the computations from the datain the table. Thetables
can not be shared between threads, and thus the way to copy atable between the threadsis to export the table type and send
the data, then let the other thread construct a copy of the table from that. But the table created in another thread really needs
only the base data organization. If it does any computations on that data, that would be its own computations, different
than the ones in the exporting thread. So all it needs to get is the basic table type with the primary index, very rarely some
secondary indexes, and pretty much never the aggregators. Theimporting thread would then add its own secondary indexes
and aggregators before initializing its table type and constructing the table fromit.

The way to get such a stripped table type with only the fundamentally important partsis:
$t abt ype_fundanental = $tabtype->copyFundanental ();

That copies the row type and the primary index (the whole path to the first leaf index type) and |eaves alone the rest. All
the aggregators on all the indexes, even on the primary one, are not included in the copy. In the context of the full nexus,
making it can look like:

$facet = $owner - >makeNexus(
nane => "data"
labels => [@abels],
t abl eTypes => |
nyt abl e => $nyt abl e- >get Type() - >copyFundanent al (),
1.
inmport => "writer",

)
In caseif moreindex typesneed to beincluded, they can be specified by path inthe argumentsof copy Fundanent al () :

$t abt ype_fundanental = $tabtype->copyFundanent al (
["byDate", "byAddress", "fifo"],
["byDate", "byPriority", "fifo"],

)

The paths may overlap, as shown here, and the matching subtrees will be copied correctly, still properly overlapping in
theresult. Thereis also aspecia syntax:

$t abt ype_fundanmental = $t abt ype- >copyFundanent al (
["secondary", "+"],

)

The " +" in the path means “do the path to the first leaf index of that subtree” and saves the necessity to write out the
whole path.

Finally, what if you don't want to include the original primary index at all? Y ou can use the string " NO_FI RST_LEAF"
asthefirst argument. That would skip it. You can till include it by using its explicit path, possibly at the other position.

For example, suppose that you have a table type with two top-level indexes, “first” is the primary index and “second” as
secondary, and make a copy:

$t abt ype_fundanmental = $tabtype->copyFundanent al (
"NO_FI RST_LEAF",
["second", "+"],
["first™, "+" 1],

302 Multithreading

In the copied table type the index “second” becomes primary and “first” secondary.

Another example of the table type exporting and of thetable copying isshownin Section 17.6: “ Internalsof aTQL join” (p.
347) .

16.5. Threads and file descriptors

Theinteraction of the file descriptors (including sockets) with threads tends to be a somewhat thorny issue. The problems
lie around the problem of geting athread to stop if it's stuck reading from afile descriptor. Triceps aims to be an one-stop
shop for the threading solutions, so among other things it covers the interaction with the file descriptors.

The overal approach isthat whenever athread opens afile, it should register that file with its TrieadOwner object. Then
when the thread is requested to die, that file will be revoked, waking up the thread if it's waiting for that file descriptor.
This is an operation that requires finesse, with multiple possibilities for the race conditions, but Triceps covers al the
complexity and takes care of everything.

The registration of files with TrieadOwner is done with:

$t o- >t rack(*Fl LE) ;
$t o- >t rack($socket) ;

The form of the argument differs depending on whether it's a plain Perl file handle or if it's afile object, such as the one
returned by the socket creation methods. The plain perl file handles have to be specified in aglob form, with * .

To unregister the file and close it, use:

$t 0- >cl ose(*FI LE);
$t 0- >cl ose($socket);

If you just want to unregister a file without closing it (not sure why would you want to do that, but why not), there is
also away:

$t o- >f or get (*FI LE) ;
$t o- >f or get ($socket);

And there also are the methods that do the registration with the plain file descriptors:

$t o- >t rackFd($f d) ;
$t o- >f or get Fd($f d) ;

The file descriptor methods underlie the file handle methods, a$t o- >t rackFd(fi | eno(FI LE)) ; isreally an equiv-
alent of $t o- >t rack(*FI LE) ;.

But wait, thereismore. It'sannoying to close thefilesmanually, and easy to misstoo (especially if the code might diewithin
an eval , with the file close sandwiched between them). The scope-based file closing is much easier and more reliable:
when you leave the scope, the file is guaranteed to get closed. Triceps provides the scope-based file handle management.
Actuallly, if you use files-as-objects in Perl (in the form like $socket), Perl already does the scope-based management,
closing the file when the last reference to it disappears. But Triceps adds the automatic forgetting of the file in the Triead-
Owner as well. And it's very, very important to unregister the file descriptors before closing them, or the file descriptor
corruption will result when the thread exits. A scope-based fileis registered like this:

$tf = $to->makeTrackedFile($file);

$t f will contain a TrackedFile object that will control the life of the file tracking. $t f contains its own reference to the
filehandle, so until $t f isdestroyed, the file handle will not be destroyed and thus will not be automatically closed. When
$t f goesout of scope and gets destroyed, it will unregister the file from TrieadOwner and then discard its reference to the
file handle, letting Perl closeit if al the references are gone. To find the file handle from the TrackedFile, use:

$file = $tf->get();

Threads and file descriptors 303

It's al'so possible to close the file explicitly before $t f goes out of scope:
$tf->close();

That will unregister the file and close it. And in this case close really means close: even if there are other references to the
file handle, it will still get closed and could not be used through these other references any more either. After that, the final
destruction of the TrackedFile object will have nothing to do.

In the C++ API the file registration happens a bit differently, through a Filelnterrupt object that keeps track of a set of file
descriptors. Each trieadOwner object hasapublicfieldf i | el nt er r upt _ of that class. Thereisno scoped unregistration
in the C++ API yet, it should probably be added in the future. The Perl API actually also uses the Filelnterrupt but with
the high-level logic on top of it.

In caseif you wonder what exactly happens with the file handle during the revocation, let metell you. Overall it followsthe
approach described in my book [Babkinl0], with the system call dup2() copying a descriptor of / dev/ nul | opened
read-only over the target file descriptor. Perl's file handle keeps owning that file descriptor id but now with a different
contents in it. However there is a problem with the plain dup2() , it doesn't aways interrupt the ongoing system call.
I've thought that on Linux it works reliably but then I've found that it works on the sockets but not on the pipes, and even
with socketstheaccept () seemstoignoreit. So I've found a better solution: useadup2() but then also send a signal
(Triceps uses SI GUSR2) to the target thread, which has adummy handler of that signal to avoid killing the process. Even
if dup2() getsignored by the current system call, the signal will get through and either make the ongoing system call
return EI NTR to make the user code retry or cause a system call restart in the OS. In either case the new file descriptor
copied by dup2() will be discovered on the next attempt and cause the desired interruption. And unlike the signal used
by itself, dup2() closesthe race window around the signal.

By theway, the Perl'st hr eads: : ki | | () doesn't send areal signal, it just setsaflag for theinterpreter. If you try it on
your own, it won't interrupt the system calls, and now you know why. Instead Triceps gets the POSI X thread identity from
the Perl thread and calls the honest pt her ad_ki I | () from the C++ code.

And another detour into the gritty details, what if the thread gets requested to die after the socket is opened but before it
is tracked? The answer is that the tracking enrollment will check whether the death request already happened, and if so,
it will revoke the socket right away, before returning. So the reading loop will find the socket revoked right on its first
iteration. It's one of these potential race conditions that Triceps prevents.

Now returning back to the high-level Perl API. Asit turns out, Perl doesn't allow to pass the file descriptors between the
threads. Well, you sort of can pass them as arguments to another thread but then it ends up printing the error messages
like these and corrupting the reference counts:

Unbal anced string table refcount: (1) for "GENL" during global destruction.

Unbal anced string table refcount: (1) for "/usr/lib/perl5/5.10.0/ Synbol.pn during gl obal
destructi on.

Scal ars | eaked: 1

If you try to pass afile descriptor through trheads::shared, it honestly won't allow you, while the thread arguments pretend
that they can and then fail.

And it's something that isreally needed, for more than one reason. If you write a TCP server, you typically have one thread
accepting connections and then creating a new thread to handle each accepted socket. And the typical way to avoid polling
on asocket isto have two threads handleit, one doing all the reading, another one doing all the writing. None of that works
with Perl out of the box. Triceps comes to the rescue again, it gets done as follows:

in one thread
$t o- >app() - >st oreC oseFi | e($nane, $socket);

in another thread
ny ($tf, $socket) = $to->trackGetFil e($nanme, 'r+');

304 Multithreading

The first thing that needs to be clarified here is that even though the variables $t o are named the same in both threads,
they contain different TrieadOwner objects, each one belonging to its own thread. st or eCl oseFi | e() stores a copy
of the socket in the App object and then closes it in the local thread (the copy stays open).t rackGet Fi | e() pullsthe
socket out of the App, registersit with the TrieadOwner and creates a TrackedFile scoped object for it, returning both the
TrackedFile and the socket handle object.

Y ou can actually get the filehandle directly from the TrackedFile, as $t f - >get () , so why return the socket separately?
Asit turnsout, Perl hasissues with handling the Perl values stored inside the XS objectsiif they aren't referred by any Perl
variables. Returning the file handle as a separate value prevents that.

The file opening mode still has to be specified asat r ackGet Fi | e() argument because it can't be easily pulled out of
the original file handle, and also because the other thread might want to use only a subset of the modes from the original.
The mode can be specified in either of the fashions: asr/ W a/ r +/ w+/ a+ or </ >/ >>/ +</ +>/ +>>,

The $nane is a unique name by which this socket is known in the App, it has to be generated in some way to guarantee
the uniqueness. But then the name is a plain string that can be passed between the threads, either as an argument at the
thread creation time or in a Triceps Rowop going through a nexus. The whole procedure is easy, straightforward, and
difficult to get wrong.

Let'slook at more variations of the same. What if you want to pass afile handle to more than one thread? It's atypical case
when a TCP server accepts a connection and wants to start the separate reader and writer threads on that socket. One way
isto simply passit twice, with different names. For example:

in the acceptor thread
$t o- >app()->storeFil e(' nane_r', $socket);
$t o- >app()->stored oseFi |l e(' name_w , $socket);

in the reader thread
ny ($tf, $socket) = $to->trackGetFile('name_r', 'r');

#1in the witer thread
ny ($tf, $socket) = $to->trackGetFile('name_w, 'wW);

The st or eFi | e() in the acceptor stores a copy of the file descriptor but doesn't close the original. Which then gets
closed after storing the second copy. Then two threads extract each its own copy. In this example each thread addsits own
permission limitation on the extracted file handle, one reading, another one writing, even though the underlying socket is
capable of both reading and writing.

Another way ispossible if the threads are started sequentially, such asif the acceptor thread starts the reader thread, which
inturn startsthe writer thread. Then the reader thread can load the file handle without forgetting it in the App before starting
the writer thread, and then the writer thread would get it and discard from the App:

in the acceptor thread
$t o- >app() - >storeC oseFil e(' nane', $socket);
/1l ... start the reader thread

in the reader thread
ny ($tf, $socket) = $to->trackDupFile(' nane', 'r');
/[l ... start the witer thread

#1in the witer thread
ny ($tf, $socket) = $to->trackGetFile(' nane', 'wW);

Threads and file descriptors 305

Y et another way isto store the file once and load into each thread without forgetting, but then have the storing thread close
the copy stored in the App after al the loading threads have completed the initialization. For example;

in the acceptor thread

$t o- >app() - >st oreCl oseFi |l e(' name', $socket);
/1l ... start the reader thread

/1l ... start the witer thread

$t o- >readyReady(); // wait for all threads to initialize
$t o- >app() - >cl oseFd(' nane');

in the reader thread
ny ($tf, $socket) = $to->trackDupFile(' nane', 'r');
$t 0- >r eadyReady() ;

#in the witer thread
ny ($tf, $socket) = $to->trackDupFile(' nane', 'wW);
$t 0- >r eadyReady() ;

In the acceptor thread, r eadyReady() doesn't mark the acceptor thread as ready, because it already is, but sSimply waits
for all other threads to become ready. And the reader and writer threads report that they are ready only after they have
copied the file handle out of the App. This approach is used, for example, in Triceps::X::ThreadedClient. It would not be
SO great in aserver because generally we want the server to accept the connections as fast as possible, without waiting for
each connection's threads to initialize. But it's fine for a client.

The App's copy of the fileis closed by cl oseFd() . It'san Fd and not a File because the App really stores the OS file
descriptors, not the Perl file handles, and the File handling is done as wrappers on top of it. If you really want, you can
deal with the raw file descriptors in the App, with the methods described in Section 19.20: “App reference” (p. 400)

and Section 20.37: “TrieadOwner reference” (p. 510). But dealing directly with the Perl file handles is much more
convenient.

16.6. Dynamic threads and fragments in a socket
server

The threads can be used to run a TCP server that accepts the connections and then starts the new client communication
thread(s) for each connection. This thread can then communicate with the rest of the model, feeding and receiving data,
as usual, through the nexuses.

Thechallenge hereisthat there must be away to create the threads dynamically, and later when the client closes connection,
to dispose of them. There are two possible general approaches:

» Dynamically create and delete the threads in the same App;
» Create anew App per connection and connect it to the main App.

Both have their own advantages and difficulties, but the approach with the dynamic creation and deletion of threads ended
up looking easier, and that's what Triceps has. The second approach is not particularly well supported yet. Y ou can create
multiple Apps in one program, and you can connect them by making two Triceps Trieads run in the same OS thread and
ferry the data around. But it's extremely cumbersome. This will be improved in the future, but for now the first approach
istheticket.

Thedynamically created threads are grouped into the fragments. Thisis done by specifying the fragment name option when
creating athread. The threads in afragment have afew special properties.

306 Multithreading

Oneg, it's possible to shut down (i.e. request to die) the whole fragment in one fell swoop. There is no user-accessible way
to shut down the individual threads, you can shut down either the whole App or a fragment. Shutting down individual
threads is dangerous, since it can mess up the application in many non-obvious ways. But shutting down a fragment is
OK, since the fragment serves asingle logical function, such as servicing one TCP connection, and it's OK to shut down
the whole logical function.

Two, when athread in the fragment exits, it's really gone, and takes al its nexuses with it. Well, technically, the nexuses
continue to exist and work as long as there are threads connected to them, but no new connections can be created after this
point. Since usually the whole fragment will be gone together, and since the nexuses defined by the fragment's thread are
normally used only by the other threads of the same fragment, a fragment shutdown cleans up its state like the fragment
had never existed. By contrast, when a normal thread exists, the nexuses defined by it stay present and accessible until
the App shuts down.

To show how al this stuff works, I've created an example of a“chat server”. It's not really ahuman-oriented chat, it's more
of amachine-oriented publish-subscribe, and specially tilted to work through the running of a socket server with threads.

In this case the core logic is absolutely empty. All there is of it, is a nexus that passes messages through. The clients read
from this nexus to get the messages, and write to this nexus to send the messages.

When the App starts, it has only one thread, the listener thread that listens on a socket for the incoming connections. The
listener doesn't even care about the common nexus and doesn't import it. When a connection comes in, the listener creates
two threadsto serveit: the reader reads the socket and sends to the nexus, and the writer receives from the nexus and writes
to the socket. These two threads constitute a fragment for this client. They also create their own private nexus, allowing
the reader to send control messages to the writer. That could also have been done through the central common nexus, but
| wanted to show that there are different ways of doing things.

With a couple of clients connected, threads and sockets start looking as shown in Figure 16.2 . And the listener thread
still stays on the side.

Client 1 ((::l(')?]r,:;[oll Client 1
Reader Writer
Nexus
Client 2 (élcl)enrt]rt_ozl Client 2
Reader Writer
Nexus

Figure 16.2. Chat server internal structure.

Now let'slook at the code, located int / xChat M . t . Let's start with the top-level: how the server gets started. It'sreally
the last part of the code, that brings everything together.

It uses the ThreadedServer infrastructure:

use Triceps:: X : ThreadedServer gw print O Shut);

Dynamic threads and fragments in a socket server 307

The X subdirectory is for the examples and experimental stuff, but the ThreadedServer is really of production quality, |
just haven't written awhole set of testsfor it yet.

The server gets started like this:

ny ($port, $pid) = Triceps:: X :ThreadedServer::start Server (
app => "chat",
main => \&listenerT,
port => O,
fork => 1,
);

The port option of 0 means “pick any free port”, it will be returned as the result. If you know the fixed port number in
advance, useit. “chat” will be the name of the App, and | i st ener T isthe main function of the thread that will listen for
the incoming connections and start the other threads. And it's also the first thread that gets started, so it's responsible for
creating the core part of the App aswell (though in this case there is not awhole lot of it).

The option “fork” determines how and whether the server gets started in the background. The value 1 means that a new
process will be forked, and then the threads will be created there. The returned PID can be used to wait for that process
to complete:

wai t pi d($pi d, 0);
Of coursg, if you're starting a daemon, you'd probably write this PID to afile and then just exit the parent process.

Thefork value of O starts the server in the current process, and the current thread becomes the App's harvester thread (the
one that joins the other threads when the App shuts down).

In this case the server doesn't return until it's done, so there is not much point in the returned port value, by that time the
socket will be already closed. In this case you really need to either use afixed port or write the port number to afile from
your listener thread. The PID also doesn't make sense, and it's returned asundef . Here is an example of thiskind of call:

ny ($port, $pid) = Triceps:: X :ThreadedServer::start Server (
app => "chat",
main => \& istenerT,
port => 12345,
fork => 0,
);

Finally, the server can be started in the current process, with anew thread created as the App's harvester thread, setting the
“fork” optionto-1. The original thread can then continue and do other thingsin parallel. It'stheway | use for the unit tests.

ny ($port, $thread) = Triceps:: X : ThreadedServer::start Server(
app => "chat",
main => \&listenerT,
port => 0O,
fork => -1,
)

In this case the second value returned is not a PID but the Perl thread object for the harvester thread. Y ou should either
detach it or eventualy joinit:

$t hr ead- >j oi n();

Perl propagates the errors in the threads through thej oi n() , soif the harvester thread dies, that would show only in the
j oi n() cal. And since Triceps propagates the errorstoo, any other App's thread dying will cause the harvester thread to
die after it shuts down and joins all the App'sthreads. So if there are any errorsin the application, it will die and you will
know it right away, and not left wondering why does the application appear to run but not work right. Unless, of course,
you wrap thewholethinginan eval , then you get the error message and the clean state, and can try running another App.

308 Multithreading

The listener thread is:

sub listenerT
{
ny $opts = {};
&Triceps:: Opt::parse("listenerT", $opts, {@riceps::Triead::opts,
socket Nane => [undef, \&Triceps:: Opt::ck_nmandatory],
}o@);
undef @;
ny $owner = $opts->{owner};

nmy ($tsock, $sock) = $owner->trackGet Fil e($opts->{socket Name}, "+<");

a chat text nessage

ny $rtMsg = Triceps:: RowType- >new
topic => "string",

msg => "string",

)

a control message between the reader and witer threads
ny $rtCtl = Triceps:: RowType->new(

cmd => "string", # the command to execute

arg => "string", # the command ar gunent

)

$owner - >makeNexus(
name => "chat",
| abels => [

nmeg => $rtMsg,
1.
rowTypes => [

ctl => $rtCl,
1.
i mport => "none",

)
$owner - >r eadyReady() ;

Triceps:: X : ThreadedServer::listen(
owner => $owner,
socket => $sock
prefix => "cliconn",
handl er => \ &hat SockReadT,
)
}

It gets the usual options of the thread start (and as usual you can pass more optionstothest art Ser ver () and they will
make their way to the listener thread. But there is also one more option added by st ar t Ser ver () : “socketName”.

As described in Section 16.5: “Threads and file descriptors’ (p. 303), since the the socket objects can't be passed
directly between the threads, aroundabout way istaken. After st art Ser ver () opensasocket, it stores the dupped file
descriptor in the App with a unique name and passes that name through, so that it can be used to load the socket back
into the listener thread:

ny ($tsock, $sock) = $owner->trackGet Fil e($opts->{socket Nane}, "+<");
This does multiple things:
* Loadsthe file descriptor from the App by name (with adup()).

» Opens a Perl socket object from that file descriptor.

Dynamic threads and fragments in a socket server 309

» Registersthat file descriptor for tracking with the TrieadOwner, so that if the thread needsto be shut down, that descriptor
will be revoked and any further operations with it will fail.

» Creates a TrackedFile object that will automatically unregister the file descriptor from TrieadOwner when the Tracked-
File goes out of scope. Thisisimportant to avoid that races between the revocation and the normal close of thefile.

* Makesthe App close and forget its file descriptor.
The $t sock returned is a TrackedFile object, and $sock isthe socket filehandle.

Thelistener thread then creates the row typesfor the data messages and for the control messages between the client's reader
and writer threads, and makes a nexus. The listener is not interested in the data, so it doesn't even import this nexus itself.
The nexus passes the data only, so it has no label for the control messages, only the row type.

Then the mandatory r eadyReady () , and then the control goes again to the library that accepts the connections and starts
the client connection threads. The handler is the main function for the thread that gets started to handle the connection.
The prefix is used to build the names for the new thread, for its fragment, and for the connection socket that gets also
passed through by storing it in the App. The name is the same for all three and gets created by concatenating the prefix
with anumber that getsincreased for every connection, to keep it unique. The newly created thread will then get the option
“socketName” with the name of the socket.

How doesthe Thr eadedSer ver: : | i sten() know when to return? It runs until the App gets shut down, and returns
only when the thread is requested to die as aresult of the shutdown.

As described before, each socket gets served by two threads: one runs reading from the socket and forwards the data into
the model and another one runs getting data from the model and forwards it into the socket. Since the same thread can't
wait for both a socket descriptor and a thread synchronization primitive, they have to be separate.

The first thread started for a connection by the listener is the socket reader. Let's go through it bit by bit.

sub chat SockReadT
{
ny $opts = {};
&Triceps:: Opt:: parse("chat SockReadT", $opts, {@riceps:: Triead::opts
socket Nane => [undef, \&Triceps:: Opt::ck_nmandatory],
@)
undef @; # avoids a leak in threads nodul e
ny $owner = $opts->{owner};
ny $app = $owner->app();
ny $unit = $owner->unit();
ny $tnane = $opts->{thread};

only dup the socket, the witer thread will consune it
ny ($tsock, $sock) = $owner->trackDupFil e($opt s- >{socket Nane}, "<");

The beginning is quite usual. Then it loads the socket from the App and getsit tracked with the TrieadOwner. The listener
passes the name under which it stored the socket in the App as the option “socketName”. t r ackDupSocket () leaves
the socket instance in the App, to be found by the writer-side thread.

The socket is loaded in this thread as read-only. The writing to the socket from all the threads has to be synchronized to
avoid mixing the half-messages. And the easiest way to synchronizeisto always write from one thread; if the other thread
wants to write something, it has to pass the data to the writer thread through the control nexus.

user nessages will be sent here
ny $faChat = $owner - >i nport Nexus(
from=> "gl obal/chat",

import => "witer",

)

control nessages to the reader side will be sent here

310 Multithreading

ny $factl = $owner->makeNexus(
name => "ctl",
| abels => [
ctl => $faChat - >i npRowType("ctl"),
1,

reverse => 1, # gives this nexus a high priority
import => "witer",

)

Imports the chat nexus and creates the private control nexus for communication with the writer side. The name of the chat
nexus is hardcoded here, since it's pretty much a solid part of the application. If this were a module, the name of the chat
nexus could be passed through the options.

The control nexus is marked as reverse even though it really isn't. But the reverse option has a side effect of making this
nexus high-priority. Even if the writer thread has a long queue of messages from the chat nexus, the messages from the
control nexus will be read first. Which again isn't strictly necessary here, but | wanted to show how it's done.

The type of the control label isimported from the chat nexus, so it doesn't have to be defined from scratch.

$owner - >mar kConst ruct ed() ;

Triceps::Triead::start(
app => $opts->{app},
thread => "$tnane.rd",
fragment => $opts->{fragnment},
main => \ &hat SockWiteT,
socket Name => $opt s- >{ socket Nane},
ctl From => "$tnane/ctl",

)

$owner - >r eadyReady() ;

Then the construction is done and the writer thread gets started. And then the thread becomes ready and waits for the writer
thread to be ready too. The r eadyReady() worksin the fragments just as it does at the start of the App. Whenever a
new thread is started, the App becomes not ready, and stays this way until al the threads report that they are ready. The
rest of the App keeps working like nothing happened, at least sort of. Whenever a nexus is imported, the messages from
this nexus start collecting for this thread, and if there are many of them, the nexus will become backed up and the threads
writing to it will block. The new threads have to call r eadyReady () as usua to synchronize between themselves, and
then everything gets on its way.

Of course, if two connections are received in aquick succession, that would start two sets of threads, andr eadyReady/()
will continue only after all of them are ready. Thisis not very good but acceptable in most cases.

my $l bChat = $f aChat - >get Label ("nmsg");
ny $IbCtl = $facCtl->getLabel ("ctl");

$uni t - >makeHashCal | ($l bCt1, "OP_I NSERT",
cnmd => "print", arg => "lready," . $opts->{fragnent});
$owner - >f |l ushWiters();

A couple of labels get remembered for the future use, and the connection ready message gets sent to the writer thread
through the control nexus. By convention of this application, the messages go in the CSV format, with the control messages
starting with “!”. If thisisthe first client, this would send

Iready, cliconnl
totheclient. It'simportant to call f | ushW i t er s() every timeto get the message(s) delivered.

whi | e(<$sock>) {
s/[\r\n]+$//;

Dynamic threads and fragments in a socket server 311

ny @ata = split(/,/);
if ($data[0] eq "exit") {
last; # a special case, handle in this thread
} elsif ($data[0] eq "kill") {
eval {$app->shut downFragnent ($data[1]);};
if (3@ {
$uni t - >makeHashCal | ($I bCt1, "OP_INSERT", cnd => "print", arg => "lerror,$@);
$owner - >f l ushWiters();

}
} elsif ($data[0] eq "shutdown") {
$uni t - >makeHashCal | ($l bChat, "OP_I NSERT", topic => "*", nmsg => "server shutting
down");
$owner - >f l ushWiters();
Tri ceps: : Aut oDr ai n: : makeShar ed($owner) ;
eval {$app->shutdown();};
} elsif ($data[0] eq "shutdown2") { # with the guarantee of the |last word
ny $drain = Triceps::AutoDrain:: makeExcl usi ve($owner);
$uni t - >makeHashCal | ($l bChat, "OP_I NSERT", topic => "*", nmsg => "server shutting
down");
$owner - >f l ushWiters();
$drai n->wai t () ;
eval {$app->shutdown();};
} elsif ($data[0] eq "publish") {
$uni t - >makeHashCal | ($l bChat, "OP_I NSERT", topic => $data[1l], nsg => $data[2]);
$owner - >fl ushWiters();
} else {
this is not sonmething you want to do in a real chat application
but it's cute for a denobnstration
$uni t - >makeHashCal | ($I bCt1, "OP_I NSERT", cnd => $data[0], arg => $data[1]);
$owner - >f l ushWiters();

}
}

The main loop keeps reading lines from the socket and interpreting them. The lines are in CSV format, and the first field
is the command and the rest are the arguments (if any). The commands are:

publish

Send a message with atopic to the chat nexus.
exit

Close the connection.

kill
Close another connection, by name.

shutdown
Shut down the server.

subscribe
Subscribe the client to atopic.

unsibscribe
Unsubscribe the client from atopic.

The “exit” just exits the loop, since it works the same as if the socket just gets closed from the other side.

The“kill” shuts down by name the fragment where the threads of the other connection belong. Thisisasimple application,
so it doesn't check any permissions, whether this fragment should allowed to be shut down. If there is no such fragment,
the shutdown call will silently do nothing, so the error check and reporting is really redundant (if something goes grossly
wrong in the thread interruption code, an error might still occur, but theoretically this should never happen).

312 Multithreading

The “shutdown” sends the notification to the common topic “*” (to which al the clients are subscribed by default), then
drainsthe model and shutsit down. The drain makes sure that all the messagesin the model get processed (and even written
to the sockets) without allowing any new messages to be injected. “ Shared” means that there is no special exceptions for
some threads.

Aut oDr ai n: : nakeShar ed() actually creates adrain object that keeps the drain active during its lifetime. Here this
object is not assigned anywhere, so it getsimmediately destroyed and lifts the drain. So potentially more messages can get
squeezed in between this point and shutdown. Which doesn't matter awhole lot here.

The command “shutdown2” shows the implementation for the case when it's really important that nothing get sent after
the shutdown notification.

It startsthe drain in the exclusive mode, which means that this thread is excluded from the drain and alowed to send more
data. When the drain is created, it waits for success, so when the new message is inserted, it will be after al the other
messages. $dr ai n- >wai t () does another wait and makes sure that this last message propagates all the way. And then
the app gets shut down, whilethe drainis still in effect, so no more messages can be sent for sure.

The “publish” sends the data to the chat nexus (notethef | ushWi t er s(), asusuall).

And therest of commands (that would be “subscribe” and “unsubscribe” but you can do any other commands like * print”)
get simply forwarded to the reader thread for execution. Sending through the commands like this without testing is not a
good practice for areal application but it's cute for a demo.

{
let the data drain through

ny $drain = Triceps:: Aut oDrai n: : makeExcl usi ve($owner) ;

send the notification - can do it because the drain is excluding itself
$uni t - >makeHashCal | ($I bCt1, "OP_INSERT", cnd => "print", arg => "lexiting");
$owner - >f | ushWiters();

$drain->wait(); # wait for the notification to drain

$app- >shut downFr agnent ($opt s->{fragnent});
}

$t sock->cl ose(); # not strictly necessary

}

Thelast part is when the connection get closed, either by the “exit” command or when the socket gets closed. Remember,
the socket can get closed asymmetrically, in one direction, so even when the reading is closed, the writing may still work
and needs to return the responses to any commands received from the socket. And of course the sameistrue for the “ exit”
command.

So here the full exclusive drain sequence is used, ending with the shutdown of this thread's own fragment, which will
close the socket. Even though only one fragment needs to be shut down, the drain drains the whole model. Because of the
potentially complex interdependencies, thereis no way to reliably drain only a part, and al the drains are App-wide.

The last part, with $t sock- >cl ose(), is not technically necessary since the shutdown of the fragment will get the
socket descriptor revoked anyway, and then the socket will get closed when the last reference to it disappears. But other
than that, it's a good practice that unregisters the socket from the TrieadOwner and then closesit.

The socket writer thread is the last part of the puzzle:

sub chat SockWiteT
{
ny $opts = {};
&Triceps:: Opt:: parse("chat SockWiteT", $opts, {@riceps::Triead::opts,
socket Nane => [undef, \&Triceps:: Opt::ck_nmandatory],
ctl From => [undef, \&Triceps::Opt::ck_mandatory],

Dynamic threads and fragments in a socket server 313

b @);

undef @;

ny $owner = $opts->{owner};
ny $app = $owner->app();

ny $tnane = $opts->{thread};

nmy ($tsock, $sock) = $owner->trackGet Fil e($opt s- >{socket Nane}, ">");

ny $f aChat = $owner - >i nport Nexus(
from=> "gl obal/chat",
i mport => "reader",

)

ny $factl = $owner->i nport Nexus(
from=> $opts->{ctl Front,
i mport => "reader",

)

Theusual preamble. Thet rackGet Fi | e() consumesthe socket from the App, and thistime reopensit for writing. The
previously created nexuses are imported.

ny % opics; # subscribed topics for this thread

$f aChat - >get Label ("nsg") - >nakeChai ned("1 bMsg", undef, sub {
ny $row = $_[1]->get Row();
ny $topic = $row >get ("topic");
#pri nt O Shut ($app, $opts->{fragnent}, $sock, "XXX got topic '$topic'\n");
if ($topic eq "*" || exists $topics{$topic}) {
print Or Shut ($app, $opts->{fragnment}, $sock, $topic, ",", $row >get("nsg"), "\n");
}

1)

Thelogicisdefined asthe connected labels. The topic hash keepsthe keysthat thisthread is subscribed to. When amessage
isreceived from the chat nexus and thetopicisinthehash oris“*”, the message gets sent into the socket in the CSV format:

topic, text

Thefunction pri nt Or Shut () isimported from Triceps::X::ThreadedServer. Itsfirst 3 arguments are fixed, and the rest
are passed throughto pr i nt () . It printsthe message to the socket file handle, flushes the socket, and in case of any errors
it shuts down the fragment specified in its second argument. This way if the socket gets closed from the other side, the
threads handling it automatically shut down.

$faCt | - >get Label ("ctl")->makeChai ned("I bCt1", undef, sub {
ny $row = $_[1] ->get Row();
ny ($cnd, $arg) = $row>toArray();
if ($cnd eq "print") {
print Or Shut ($app, $opts->{fragnent}, $sock, S$arg, "\n");
} elsif ($cnd eq "subscribe") {
$topi cs{$arg} = 1;
print Or Shut ($app, $opts->{fragnent}, $sock, "!subscribed, $arg\n");
} elsif ($cnd eq "unsubscribe") {
del ete $t opi cs{$arg};
print Or Shut ($app, $opts->{fragnment}, $sock, "!unsubscribed, $arg\n");
} else {
print Or Shut ($app, $opts->{fragnment}, $sock, "!invalid conmand, $cnd, $arg\n");
}

1)
The handling of the control commands is pretty straightforward.

$owner - >r eadyReady() ;

314 Multithreading

$owner - >mai nLoop() ;

$t sock->cl ose(); # not strictly necessary

}

And therest istaken care of by thermai nLoop() . Thethread'smain loop runs until the thread gets shut down, by handling
the incoming messages. So if say pri nt O Shut () decides to shut down the fragment, the next iteration of the loop
will detect it and exit.

And now arecorded log from arun. It has been produced with the automated testing infrastructure described in Section 16.8:
“ThreadedClient, a Triceps Expect” (p. 320) .

As usual, the lines sent from the clients to the socket server are shown in bold. But since there are many clients, to tell
them apart, both the sent and received lines are prefixed by the client's name and a “|”. I've just picked arbitrary client
names to tell them apart.

I've al'so marked the incoming connection as “connect client_name”, the client's close of the socket for writing as “close
WR client_name”, and the disconnectionsas”__EOF__” after the client name.

So, here we go.

connect cl
cl|!'ready, cliconnl
connect c2
c2|!'ready, cliconn2

Two clients connect.

cl| publish,*, zzzzzz
cl|*,zzzzzz
c2|*,zzzzzz

A message published to thetopic “*” gets forwarded to all the connected clients. In reality the messages may of course be
received on separate sockets in any order, but |'ve ordered them here for the ease of reading.

c2| gar bage, trash
c2|!'invalid comrand, gar bage, trash

Aninvalid command gets detected in the writer thread and responded as such.

c2| subscri be, A
c2|!subscri bed, A
cl| publi sh, A, xxx
c2| A XXX

A subscription request gets acknowledged, and after that all the messages sent to thistopic get received by the client.

cl| subscri be, A
cl|!subscri bed, A
cl| publish, A, ww
cl| A www

c2| A, www

If more than one client is subscribed to atopic, all of them get the messages.

c2| unsubscri be, A
c2| !unsubscri bed, A
cl| publish, A vvv
cl| A vvv

The unsubscription makes the client stop receiving messages from this topic.

connect c3

Dynamic threads and fragments in a socket server 315

c3|!'ready, cliconn3

c3|exit
c3|!lexiting
c3| __EOF

The third client connects, immediately requests an exit, gets the confirmation and gets disconnected.

connect c4

c4| !'ready, cliconn4d
cl ose VR c4
c4|!lexiting

c4| __EOF

The fourth client connects and then closes its write side of the socket (that is the read side for the server). It produces the
same affect as the exit command.

c1| shut down
cl| *, server shutting down

cl| _EOF__
c2| *,server shutting down
c2| __EOF__

And the shutdown command sends the notifications to al the remaining clients and closes the connections.

16.7. ThreadedServer implementation, and the
details of thread harvesting

And now | want to show the internals of the ThreadedServer methods. It shows how to store the socket file handlesinto the
App, how the threads are harvested, and how the connections get accepted. The classis definedinl i b/ Tri ceps/ X/
Thr eadedSer ver . pm It's of essentialy production quality but misses the detailed set of tests yet, and thus for now
isplaced in the X subdirectory.

The most important method initisst art Server () :

sub startServer # ($optNane => S$optVal ue, ...)

{
ny $nynane = "Triceps:: X : ThreadedServer::startServer";
ny $opts = {};
ny @yopts = (

app => [undef, \&Triceps:: Opt::ck_nandatory],

thread => ["global", undef],

main => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps:: Opt::ck _ref(@,
"CODE") } 1,
port => [undef, \&Triceps:: Opt::ck_nmandatory],
socket Nane => [undef, undef],
fork => [1, undef],
)
&Triceps:: Opt:: parse($nmynanme, $opts, {

@ryOpt s,
=[],
b@);
if (!defined $opts->{socket Nane}) {
$opt s- >{ socket Nanme} = $opts->{thread} . ".listen";

}

nmy $srvsock = 1O : Socket: : | NET- >new(
Proto => "tcp",
Local Port => $opts->{port},

316 Multithreading

Li sten => 10
) or confess "$nynane: socket creation failed: $!'";
ny $port = $srvsock->sockport () or confess "$nynane: sockport failed: $'";

So far it's pretty standard: get the options and open the socket for listening. A slightly specia thingisthat it savesthelist of
supported optionsin the variable @ry Opt s for the future use. That future use will beto passthelist of unknown optionsto
the user thread, so the known optionsin @ry Opt s will be removed from thelist before passing it. “*” isthe pass-through:
it tells Opt : : par se to accept any options and gets all the unknown options collected in $opt s->{"*"}.

if ($opts->{fork} > 0) {
ny $pid = fork();
confess "$nmyname: fork failed: $!" unless defined $pid;
if ($pid) {
parent
$srvsock->cl ose();
return ($port, $pid);

}
for the child, fall through

}

This handles the process forking option: if forking is requested, it executes and then the parent process returns the PID
while the child process continues with the rest of the logic. By the way, your success with forking a process that has
multiple running threads may vary. The resulting process usually has one running thread (continuing where the thread that
caledf or k() was) but the synchronization primitives in the new process can be inherited in any state, so the attemptsto
continue the threaded processing are usually not such agood idea. It'susually best to fork first before there are more threads.

make the app explicitly, to put the socket into it first
my $app = Triceps:: App: : make($opt s->{app});
$app- >st or e oseFi | e($opt s- >{ socket Nane}, $srvsock);
Triceps::Triead::start(

app => $opts->{app},

thread => $opts->{thread},

mai n => $opt s->{ mai n},

socket Name => $opt s- >{ socket Nane},

&Triceps::Opt::drop({ @yOpts }, \@),
);

Then the App gets created. Previously I've shown starting the App with st art Her e() that created the App, the first
thread, and did a bunch of servicesimplicitly. Here everything will be done manually.

Triceps keeps a global list of all its Apps in the process, and after an App is created, it's placed into that list and can be
found by name from any thread. The App object will exist while there arereferencesto it, including the reference from that
global list. On the other hand, it's possible to remove the App from the list while it's still running but that's a bad practice
because it will break any attempts from its threads to find it by name.

So the App is made, then the file handle gets stored. The listening socket has to be stored into the App before the listener
thread gets started, so that the listener thread can find it. st or e oseFi | e() gets the file descriptor from the socket,
dupsit, stores into the App, and then closes the original file handle, as explained before.

Then the listener thread is started, and as shown before, it's responsible for starting all the other threads. It gets a set of
fixed options plus all the unknown optionsthat the user had specified. It will do the same trick with passing these unknown
options to the thread that runs the user code and handles the accepted connections, such asr eader T() in Section 16.6:
“Dynamic threads and fragments in a socket server” (p. 306) . In the meantime, the st art Ser ver () continues:

ny $tharvest;
if ($opts->{fork} < 0) {
@ = (); # prevent the Perl object |eaks
$t harvest = threads->create(sub {
In case of errors, the Perl's join() will transnmit the error
nmessage t hrough.

ThreadedServer implementation, and the details of thread harvesting 317

Triceps::App::find($_[0])->harvester();
}, $opts->{app}); # app has to be passed by nane
} else {
$app- >harvester();

}

The harvester logic is started. Each App must haveits harvester. st ar t Her e() runsthe harvester implicitly, unlesstold
otherwise, but if the App is created manually, the harvester has to be run manually. It can be run either in thisthread or in
another thread, as determined by the ThreadedServer option “fork”.

If the option “fork” is O, the server just runs the harvester in the current process and thread. If the option “fork” is 1, the
server runsin the first thread of the child process, and if the code got to this point, it would be running now in the child
process. So these two cases are handled together and for them the harvester just starts in the current thread with $app-
>har vest er () ; and returns after the App shuts down.

If the option “fork” is-1, it requires that the harvester is to be started in another newly created thread. $t har vest will
contain that thread's identity. A special thing about starting threads with t hr eads- >cr eat e() isthat it's sensitive to
anything in @ . If @ contains anything, it will be leaked (though the more recent versions of Perl should have it fixed).
So @ gets cleared before starting the thread.

And the harvester gets started in the new thread slightly differently. Since in the new thread al the XS objects become
undef s, the App object has to be found by namein the global list first.

One way or the other, the harvester is started. What does it do? It joins the App's threads as they exit. After all of them
exit, it removesthe App from the global list of Apps, which will allow to collect the App's memory when the last reference
to it isgone, and then the harvester returns.

If any of the App's threads die rather than exit nicely, they cause the App to be aborted. The aborted App shuts down
immediately and remembers the identity of the failed thread and its error message (only the first message is saved because
the abort is likely to cause the other threads to die too, and there is no point in seeing these derivative messages). The
harvester, in turn, collects this message from the App, and after all its cleaning-up work is done, also dies, propagating this
message. Then if the harvester is running not in the first thread of the program, that message will be propagated further
by Perl'sj oi n() .

A catch isthat the errors are not reported until the harvester completes. Normally all the App's threads should exit imme-
diately on shutdown but if they don't, the program will be stuck without any indication of what happened.

It's also possible to disable this propagation of dying by using the option “die_on_abort”:
$app- >harvester (di e_on_abort => 0);

There isaway to get the error message that caused the abort directly from the App instead.
And finally the last part of startServer():

if ($opts->{fork} > 0) {
exit O; # the forked child process
}

return ($port, $tharvest);
}

If this was the child process forked before, it exits at this point. Otherwise the port and the harvester's thread object are
returned.

The next function of the ThreadedServerisl i st en() , thefunction that gets called from the listener thread and takes care
of accepting the connections and spawning the per-client threads.

sub listen # ($opt Name => $optVal ue, ...)
{

318 Multithreading

ny $nyname = "Triceps:: X : ThreadedServer::listen";
ny $opts = {};
ny @yts = (
owner => [undef, sub { &Triceps:: Qpt::ck_mandatory(@); &Triceps::Opt::ck_ref(@,
"Triceps::TrieadOmer") }],
socket => [undef, sub { &Triceps::Opt::ck_mandatory(@); &Triceps:: Opt::ck_ref(@,
"1 QO : Socket") } 1,
prefix => [undef, \&Triceps::Opt::ck_nandatory],
handl er => [undef, sub { &Triceps::Opt::ck_nmandatory(@); &Triceps::Opt::ck_ref(@,
"CODE") } 1,
pass => [undef, sub { &Triceps::Opt::ck_ref(@, "ARRAY") }],
);
&Triceps:: Opt:: parse($nynane, $opts, {
@yOpt s,
to=> [0,
}o@);
ny $owner = $opts->{owner};
ny $app = $owner->app();
nmy $prefix = $opts->{prefix};
ny $sock = $opts->{socket};

The option parsing issimilar to st art Ser ver () : it also saves the list of supported options in the variable @ry Opt s
and accepts any unknown options with “*” | to pass them through to the user thread.

nmy $clid = 0; # client id

whi | e(! $owner - >i sRqDead()) {
ny $client = $sock->accept();
if (!defined $client) {
my $err = "$!"; # or the text message will be reset by isRqgDead()
if ($owner->i sRgDead()) {

| ast;

} elsif($!I{EAGAIN} || $!{EINTR}) { # nuneric codes don't get reset
next ;

} else {
confess "$nynane: accept failed: $err";

}
}

The accept loop starts. It runsuntil the thread is requested to die at shutdown. The shutdown would al so revoke thelistening
socket, and thus if it happened in the middle of $sock- >accept (), $sock- >accept () would return an undef
because it will seetherevocation asan error. Notethat | i st en() itself doesn't request to track the socket for revocation.
The caller must do that beforecalingl i st en() .

So, after accept () the code checks for errors. The first thing to check for is again thei sRdDead() , because it's not
really an error, it's an expected condition. If the shutdown is found, the loop exits. However the error text had to be saved
before i sRqDead() , because like other Triceps callsi sRdDead() will clear the error text. Then the check for the
spurious interruptions is done, and for them the loop continues. Interestingly, the $! {} uses the numeric part of $! that
isindependent from itstext part and doesn't get cleared by the Triceps calls. And on any other errors the thread confesses.
The confession will unroll the stack, eventually will get caught by the Triceps threading code, abort the App, and propagate
the error message to the harvester.

$clid++;
nmy $cliname = "$prefixsclid";
$app- >st oreCl oseFi | e($cliname, $client);

Triceps::Triead::start(
app => $app->get Nane(),
thread => $clinane,
fragment => $cli nane,
mai n => $opts->{handl er},

ThreadedServer implementation, and the details of thread harvesting 319

socket Nane => $cl i nane,
&Triceps:: Opt::drop({ @yOpts }, \@),
)

Doesn't wait for the new thread(s) to becone ready.

}
}

If aproper connection has been received, the socket gets stored into the App with a unique name, for later load by the per-
client thread. And then the per-client thread gets started.

Opt : : drop() passesthrough all the original options except for the ones handled by this thread. In retrospect, thisis not
the best solution for this case. It would be better to just use @ $opt s->{"*"}} instead. Opt : : dr op() isconvenient
when not all the explicitly recognized options but only some of them have to be dropped.

After starting the thread, the loop doesn't call r eadyReady () but goes for the next iteration. Thisis basically because
it doesn't care about the started thread and doesn't ever send anything to it. And waiting for the threads to start will make
the loop slower, possibly overflowing the socket's listening queue and dropping the incoming connections if they arrive
very fast.

And the last part of the ThreadedServer isthe function pri nt Or Shut () :

sub printO Shut # ($app, $fragment, $sock, @ext)

{
ny $app = shift;
ny $fragnent = shift;
ny $sock = shift;

undef $!;
print $sock @;
$sock->fl ush();

if ($) { #can't wite, so shutdown
Triceps: : App: : shut downFr agnent ($app, $fragnent);
}
}

Nothing too complicated. Printsthe text into the socket, flushesit and checksfor errors. On errors shuts down the fragment.
In this case there is no need for draining. After all, the socket leading to the client is dead and there is no way to send
anything more through it, so there is no point in worrying about any unsent data. Just shut down asfast asit can, before the
threads have generated more data that can't be sent any more. Any data queued in the nexuses for the shut down threads
will be discarded.

16.8. ThreadedClient, a Triceps Expect

In case if you're not familiar with it, expect isaprogram that allows to connect to the interactive programs and pretend
being an interactive user. Obviously, the terminal programs, not the GUI ones. It has originally been done as an extension
for Tcl, and later ported asalibrary for Perl and other languages.

The class Triceps::X:: ThreadedClient implements avariety of expect inthe Triceps framework. I'm using it for the unit
tests of the Triceps servers but it can have other uses aswell. Why not just use expect ? Onereason, | don't like bringing
in extra dependencies, especialy just for tests, second, it was an interesting exercise, and third, | didn't realize that | was
writing a simplified variety of expect until | had it mostly completed. The biggest simplification compared to the real
expect isthat ThreadedClient works with the complete lines.

It getsused in the unit testslike this: first the server gets started in abackground process or thread, and then the server's port
number is used to create the clients. The ThreadedClient gets embedded into a Triceps App, so you can start other thingsin
the same App. Well, the names of the ThreadedClient threads are hardcoded at the moment, so you can start only one copy
of it per App, and there could be conflicts if you start your other threads and use the same names as in ThreadedClient.

320 Multithreading

But first you need to start an App. I'll show it donein yet another way thistime:

Triceps::App::build "client", sub {
ny $appnane = $Triceps: : App: : nane;
ny $owner = $Triceps:: App:: gl obal ;

give the port in startdient

ny $client = Triceps:: X :Threadedd i ent - >new(
owner => $owner,

total Ti mneout => 5,

debug => 0,

);

$owner - >r eadyReady() ;

$client->startCient("cl", $port);
$client->expect("cl", 'lready');

this repetition tests the expecting to the first match

$client->send("cl", "publish,*, zzzzzz\n");
$client->send("cl", "publish,*, zzzzzz\n");
$client->expect("cl", '*, 6 zzzzzz');
$client->expect("cl", '*, 6 zzzzzz");

$client->startCient("c2", $port);

$client - >expect ("c2", 'lready,cliconn2');
$client->send("cl1", "kill,cliconn2\n");
$cli ent - >expect ("c2", ' _ECF_');
$client->send("cl", "shutdown\n");

$cli ent - >expect ("cl1", ' _ECF_');

}s

Triceps:: App::build() iskind of like Tri ceps:: Tri ead: : start Here() but saves the trouble of pars-
ing the options. The app name is its first argument and the code for the main routine of the first thread is the sec-
ond argument. That first Triead will run in the current Perl thread. After that the name of the app is placed into the
global variable $Tri ceps: : App: : nane, the App object into $Tri ceps: : App: : app, and the TrieadOwner into
$Tri ceps: : App: : gl obal . The name of the first Triead is hardcoded as “global”. After the main function exits,
Triceps:: App: : bui I d() runsthe harvester, very similartost art Her e() .

Triceps:: X : Threadedd i ent - >new() isused to start an instance of aclient. A single client instance supports
multiple connections, to the same or different servers. The option “owner” gives it the current TrieadOwner as a starting
point but ThreadedClient will create its own threads starting from this point.

The port number for the connection can be specified as either the option “port” or as the second argument of st art -
Qi ent (). You can use both, and then the option will provide the default value whilest art C i ent () can stil over-
rideit.

The option “debug” is optional, with the default value of 0. In the non-debug mode ThreadedClient collects the trace of
the run but otherwise runs silently. Setting the “debug” option to 1 makes it also print the trace as it gets collected, so if
something goes not the way you expected, you can see what it is. Setting the debug to 1 also adds the printouts from the
socket-facing threads, so you can also see what goes in and out the client socket.

The option “total Timeout” can be used to set the time limit in seconds (as a floating-point number, so you can use values
like 0.1 for atimeout of 0.1 second) for the whole exchange. It's very convenient for the unit tests, limiting the time for
which the test could get stuck if something goeswrong. If the timeout gets exceeded, all the following callsof expect ()
will return immediately, setting the error message in $@and appending it to the trace.

There are three ways to specify the timeout. Two of them areinthe new() :

ThreadedClient, a Triceps Expect 321

ny $client = Triceps:: X : Threadedd i ent - >new(
owner => $owner,
total Ti meout => $ti neout,

)

ny $client = Triceps:: X : Threadedd i ent - >new(
owner => $owner,
ti neout => $tinmeout,

)

The option “total Timeout” gives a timeout for the whole run to complete. Once that timeout is reached, al future
expect () sjust fail immediately. The option “timeout” gives the default timeout for each expect () . It's possible to
use both, and each call of expect () will be limited by the shorter time limit of the two (“total Timeout” starts counting
sincethecall of new(), not fromstart C i ent (), while“timeout” starts counting since the call of expect ()).

The third way isto use an extraargument in expect () :
$client - >expect ("cl", "expected text", $tinmeout);

This timeout completely overrides whatever was set in new() . The value of 0 disables the timeout for this call, and even
0 still overrides the timeout from new() , so it can be used for the one-off calls without the timeout.

After the ThreadedClient object is created, the client connections get started withst art C i ent () . Itsfirst argument is
a symbolic name of the client that will be used in the further calls and also in the trace. The second optional argument is
the port number, if you want to use a different port than specified in the new() .

After that the data gets sent into the client socket with send() , and the returned lines get parsed with expect () . The
usual procedure isthat you send something, then expect some response to it.

The second argument of expect () isactualy aregexp placed inside astring. So to expect aliteral special character like
“*mprefix it with abackslash and put the string into single quotes, like:

$client->expect("cl", '*,zzzzzz');

expect () keepsreading lines until it finds one matching the regexp. Then all the lines including that one are added to
the trace and the call returns. The sent lines are also included into the trace, with the prefix “>".

There are a couple of special lines generated by the connection status itself rather than coming from the socket. When
the socket gets connected, it generates the line “ connected name” in the trace (but not as an expectable input). When the
connection getsdropped by the server, thisgeneratesan expectableline®_ EOF . And eachlinein thetrace gets prefixed
with the client name and “|”. The example of the chat server run in the previous section was created by the ThreadedClient.

The socket disconnect (“__EOF__") has another special property: if it's encountered by an expect () call that doesn't

expect it, that call and the following ones will set the error message in $@and append it to the trace, then immediately
return. This handles the situation with the unexpectedly dropped connection quickly, without resorting to the timeout.

The recorded trace can be extracted as $cl i ent - >get Tr ace() . So for unit tests you can check the trace match as
ok($client->getTrace(), $expected);

It's possible to get only the error messages with $cl i ent - >get Err or Trace() .

One more method not shown above allows to close the client socket (in socket terms, shut it down):
$client->sendd ose("c4", "WR');

Thefirst argument isthe client name. The second argument determines, which side of the socket gets closed: “WR” for the
writing side, “RD” for the reading side, and “RDWR” for both. It's the same names as for the system call shut down() .

Internally the ThreadedClient isvery much like the chat server, except for the support of the timeouts. The way the timeouts
work is described below in Section 16.9: “Thread main loop and timeouts in the guts of ThreadedClient” (p. 323) But

322 Multithreading

thereisnot awholelot of point in going over the rest of implementation in detail. Feel freeto read it onyour own, inl i b/
Tri ceps/ X/ ThreadedC i ent. pm

16.9. Thread main loop and timeouts in the guts
of ThreadedClient

First of al, let me re-iterate: if you look for repeatability of computation, you should really use an external time source
synchronized with your data. But sometimes you really need to work with the real time, such as when handling the input
from asocket and/or time-limiting the run of the tests. The repeatability doesn't matter much for these uses, sinceit'sreally
for handling of the cases that Should Never Happen.

The ThreadedClient uses this kind of timeouts, so I'll use its implementation as an example. Let's start by stepping back
and looking at the structure of ThreadedClient. It runsin multiple threads.

The collector thread is the heart of ThreadedClient. When a ThreadedClient object is created, the collector thread starts. It
will be receiving data from the connections and matching it up with the expectations.

Whenever a client connection is created, two threads go with it, the reader and writer. The reader passes the data directly
to the collector, which then buffers all the received data until expect () asksfor it.

Finally, there is the thread where the user's control code runs. When a ThreadedClient gets created in the user thread, the
option “owner” provides the TrieadOwner of that user thread to the ThreadedClient object.

expect () works by sending arequest to the collector thread and waiting for the response fromit. If thereisatime limit
and the response is not received within it, the wait gets interrupted, and a cancellation request gets sent to the collector.

new() createsthe labelsfor processing the replies from the collector:

$sel f->{faRepl y}->get Label ("nsg") - >makeChai ned("| bRepl yExpect", undef, sub {
ny ($cnd, $client, $arg) = $_[1]->get Row()->toArray();
if ($cnd eq "expect") {
ny $ptext = $arg;
$ptext =~ s/~ $client|/gm
$sel f->{trace} .= $ptext;
if ($self->{debug}) {
print $ptext;
}

$sel f - >{ expect Done} = 1;
} elsif ($cnd eq "error") {
save the error in trace, so that it will be easily printed.
ny $ptext = $arg . "\n";
$ptext =~ s/~ $client|/gm
$sel f->{trace} .= $ptext;
$sel f->{errorTrace} .= $ptext;
if ($self->{debug}) {
print $ptext;
}

$sel f->{error} = $arg;
$sel f - >{ expect Done} = 1;
}

But of course these labels will not run until the thread reads the data from its input facets. Most threads read the data from
the facets continuously with Tr i eadOaner : : mai nLoop() . Of course, the user thread that owns ThreadedClient can't
do that, or it would not be able to run the user code. But anyway, let's ook at the internals of the mai nLoop() for the
reference first. It'simplemented in C++ literally asfollows:

voi d Tri eadOaner: : mai nLoop()

Thread main loop and timeouts in the guts of ThreadedClient 323

{
while (nextXtray())

{1}

next Xt ray() representsone step of the main loop: it reads oneincoming tray from one of the input facets and processes
it. "Xtray" isaspecia form of the trays used to pass the data across the nexus. If no tray is available, it waits. If more that
one facet has trays available, the facets of the reverse nexuses get the higher priority, and then within the same priority it
round-robins. It returnst r ue until the thread is requested dead, and then it returnsf al se. next Xtray() isavailable
in the Perl APl aswell.

Now we're ready to look at expect () . The core part of expect (), after it computes the time limit from the three
sources, isthis:

$sel f->{error} = undef;
$sel f - >{ expect Done} = 0;

if ($self->{debug} > 1) {
print "expect: $pattern\n”
}

$owner - >uni t () - >makeHashCal | ($sel f->{faCt|}->get Label ("nsg"), "OP_I NSERT",
cmd => "expect",

client => $client,

arg => $pattern,

)

$owner - >f | ushWiters();

if ($limt >0.) {
whi | e(! $sel f - >{ expect Done} && $owner->next XtrayTimeLimt($limt)) { }
on tineout reset the expect and have that confirned
if (!$self->{expectDone}) {
$owner - >uni t () - >makeHashCal | ($sel f->{faC|}->get Label ("nsg"), "OP_I NSERT",
cmd => "cancel ",
client => $client,
)
$owner - >f | ushWiters();
wait for confirmation
whi | e(! $sel f - >{ expect Done} && $owner->next Xtray()) { }

}
} else {

whi | e(! $sel f - >{ expect Done} && $owner->next Xtray()) { }
}

if ($app->i sAborted()) {
confess "$myname: app is aborted";

}
$@= $self->{error};

If there is no time limit, it keeps reading the data from the facets with $owner - >next Xt r ay() until it gets the reply
from the collector thread. If there is atime limit, it uses a special form of next Xt r ay() with the time limit. There are
multiple of these special forms:

$res = $owner - >next Xt rayNoWai t () ;
Returnsimmediately if thereis no data available at the moment.
$res = $owner->next XtrayTi nmeLi it ($deadl i ne);

Returns if no data becomes available before the absolute deadline.

324 Multithreading

$res = $owner - >next Xt rayTi neout ($ti meout) ;

Returnsif no databecomes avail abl e before the timeout, starting at thetime of the call. Just to reiterate, the differenceisthat
thenext Xt rayTi meLi mi t () receivesthe absolutetime sincethe epoch whilenext Xt r ayTi meout () receivesthe
length of the timeout starting from the time of the call, both as seconds in floating-point.

All the forms that may return early on no data return f al se if they have to do so. If you need to differentiate between
these functions returning f al se due to the lack of data and due to the thread being requested to shut down, you can do
it with $Sowner - >i sRgDead() .

The absolute deadline is generally a more reliable approach than the relative timeout. It's not susceptible to drift over time
caused by the slight delays between the timeout being calculated and the start of the time-limited call. To compute the
deadline as an offset from the current time, you need to get the current time. Thefunction Tr i ceps: : now() returnsthe
current time in seconds since epoch as a floating-point value, including the fractions of the seconds (which is the general
time format of the Triceps Perl API). Then you add the timeout to it and get the deadline value:

$limt = Triceps::now() + $tineout;
Tri ceps: : now() isalsoconvenient for finding out the performance of the Triceps code, and in general of the Perl code.

expect () usesthe form with the absolute deadline. If the collector thread finds a match, it will send a rowop back to
the expect thread, where it will get processed in next Xt rayTi meLi mi t (), caling alabel that setsthe flag $sel f -
>{ expect Done}, andthennext Xt r ayTi neLi mi t () will return 1, and the loop will find the flag and exit.

If the collector thread doesn't find a match, next Xt r ayTi meLi mi t () will return O, and the loop will again exit. But
then it will fill find the “done” flag not set, so it knows that the timeout has expired and it has to tell the collector thread
that the call is being cancelled. So it sends another rowop for the cancel, and then waits for the confirmation with another
next Xt ray(), thistimewith no limit on it since the confirmation must arrive back quickly in any case.

It's the confirmation rowop processing that sets $sel f->{ error}. But there is always a possibility that the match
will arrive just after the timeout has expired but just before the cancellation. It's one of these things that you have to
deal with when multiple threads exchange messages. What then? Then the normal confirmation will arrive back to the
expecting thread. And when the cancel message will arrive to the collector thread, it will find that this client doesn't have
an outstanding expect reguests any more, and will just ignore the cancel. Thus, the second next Xt r ay() will receive
either a confirmation of the cancel and set the error message, or it will receive the last-moment success message. Either
way it will fall through and return (setting $@if the cancel confirmation came back).

By the way, if the collector thread finds the socket closed, it will immediately return an error rowop, very similar to the
confirmation of the cancel. Which will set both $sel f - >{ expect Done} and$sel f - >{ er r or} intheexpect thread.

16.10. The threaded dreaded diamond and data
reordering

The pipelined examples shown before had very conveniently preserved the order of the data while spreading the computa-
tional load among multiple threads. But it forced the computation to pass sequentially through every thread, increasing the
latency and adding overhead. The other frequently used option isto farm out the work to anumber of parallel threads and
then collect the results back from them. This topology is colloquially known as “diamond” or “fork-join” (having nothing
to do with the SQL joins, just that the arrows first fork from one box to multiple and then join back to one box).

The single-threaded use of thistopology has already been discussed in Section 14.1: “The dreaded diamond” (p. 233) , and
its diagram can be found there in Figure 14.1: “The diamond topology.” (p. 233) .

There are multiple waysto decide, which thread gets which unit of datato process. One possibility that providesthe natural
load balancing is to keep a common queue of work items, and have the worker threads (B and C in Figure 14.1 (p. 233))
read the next work item when they become free after processing the last item. But this way has an important limitation:
there is no way to tell in advance, which work item will go to which thread, so there is no way for the worker threads to

The threaded dreaded diamond and data reordering 325

keep any state. All the state would have to be encapsulated into the work item (awork item would be atray in the Triceps
terms). And at the moment Triceps provides no way to maintain such a shared queue.

The other way is to partition the data between the worker threads based on the primary key. Usualy it's done by using a
hash of the key, which would distribute the data randomly and hopefully evenly. Then aworker thread can keep the state
for its subset of keys, forming a partition (also known as“ shard”) and process the sequential updates for this partition. The
way to send a rowop only to the thread B or only to the thread C would be by having a separate designated nexus for each
worker thread, and the thread A making the decision based on the hash of the primary key in the data. The processed data
from al the worker threads can then be sent to a single nexus feeding the thread D.

But either way the data will arrive at D in an unpredictable order. The balance of load between the worker threads is not
perfect, and there is no way to predict, how long will each tray take to process. A tray following one path may overtake
atray following another path.

If the order of the data is important, D must collate the data back into the original order before processing it further.
Obvioudly, for that it must know what the original order was, so A must tag the data with the sequential identifiers. Since
the data rows themselves may get multiplied, the tagging is best done at the tray level (what happens if the trays split in
the worker threads is a separate story, for now the solution is simply “keep the tray together”).

When the data goes through a nexus, Triceps always keeps atray as an indivisible bundle. It aways gets read from the
reading facet together, without being interspersed with the data from the other trays. Asthe datais sent into awriter facet,
it's collected in atray, and sent on only when the facet gets flushed, with the Tri eadOwner : : fl ushWiters() or
Facet::flushWiter().

There also are two special 1abels defined on every nexus, that tell the tray boundaries to the reading thread:
« “ BEGIN_ " iscalled at the start of the tray.
» “ END_" iscalled at the end of the tray.

These labels can be defined explicitly, or otherwise they become defined implicitly anyway. If they get defined implicitly,
they get the empty row type (one with no fields). If you define them explicitly, you can use any row type you please, and
thisisagood place for the tray sequence id.

And in a writer facet you can send data to these labels. When you want to put a sequence id on a tray, you define the
“ BEGIN_" label with that sequenceidfield, andthencall the* BEGIN " label with the appropriateid values. Evenif you
don't call the“ BEGIN " and“_END " labels, they do get called (not quite called but placed on the tray) automatically
anyway, with the opcode of OP_| NSERT and all the fields NULL. The direct calling of these labels will also cause the
facet to beflushed: “_ BEGIN_" flushes any data previously collected on thetray and then addsitself; “ END_ " addsitself
and then flushes the tray.

The exact rules of how the“ BEGIN_" and“_END_" get called are actually somewhat complicated, having to deal with
the optimizations for the case when nobody is interested in them, but they do what makes sense intuitively.

The case when these labels get a call with OP_I NSERT and no data, gets optimized out by not placing it into the actual
Xtray, even if it was called explicitly. Then in the reader facet these implicit rowops are re-created but only if thereisa
chaining for their labels from the facet's FnReturn or if they are defined in the currently pushed FnBinding. So if you do a
trace on the reading thread's unit, you will see these implicit rowops to be called only if they are actually used.

Before going to the example itself, let's talk more about the general issues of the data partitioning.

If the data processing is stateless, it's easy: just partition by the primary key, and each thread can happily work on its own.
If the data depends on the previous data with the same primary key, the partitioning is still easy: each thread keepsthe state
for its part of the keys and updatesit with the new data.

But what if you need to join two tables with independent primary keys, where the matches of the keys between them
are fairly arbitrary? Then you can partition by one table but you have to give a copy of the second table to each thread.

326 Multithreading

Typically, if one table is larger than the other, you would partition by the key of the big table, and copy the small table
everywhere. Since the datarows are referenced in Triceps, the actual data of the smaller table won't be copied, it would be
just referenced from multiple threads, but each copy will still have the overhead of its own index.

With some luck, and having enough CPUs, you might be able to save alittle overhead by doing a matrix: if you have one
table partitioned into the parts A, B and C, and the other table into parts 1, 2 and 3, you can then do a matrix-combination
into 9 threads processing the combinations A1, A2, A3, B1, B2, B3, C1, C2, C3. If both tables are of about the same size,
thiswould create a total of 18 indexes, each keeping 1/3 of one original table, so the total size of indexes will be 6 times
the size of one original table (or 3 times the combined sizes of both tables). On the other hand, if you were to copy the
first table to each thread and split the second table into 9 parts, creating the same 9 threads, the total size of indexes will
be 9 times the first table and 1 times the second table, resulting in the 10 times the size of one original table (or 5 times
the combined sizes of both tables). The 3x3 matrix is more optimal, but the catch isthat the results from it will really have
to be restored to the correct order afterwards.

The reason is that when a row in the first table changes, it might change its join key, matching the row from a different
partition of the second table. Which means that the DELETE of the old value and the INSERT of the new value will be
processed in the different threads. For example, it might move the processing from the thread A1 to the thread A2. So the
thread A1 would generate aDELETE for the join result, and the thread A2 would generate afollowing INSERT. With two
separate threads, the resulting order will be unpredictable, and the INSERT coming before the DELETE would be bad.
The post-reordering is required to ensure the correct order.

By contrast, if you just partition thefirst table and copy the second one everywhere, you get 9 threadsA, B, C, D, E, F, G, H,
I, and thechangein arow will still keepit inthe samethread, so the updateswill come out of that thread strictly sequentially.
If you don't care about the order of changes between different primary keys, you can get away without the post-reordering.
Of coursg, if akey field might change and you care about it being processed in order, you'd till need the post-reordering.

The example I'm going to show is a somewhat strange mix. It's an adaptation of the Forex arbitration example from the
Section 12.3: “The lookup join, done manualy” (p. 182) . Asyou can see from the name of that section, it's doing a self-
join, and doing it twice: kind of like going through the same table three times.

The partitioning in this example works as follows:
» All thedatais sent to all the threads. All the threads keep afull copy of the table and update it according to the input.
 But then they compute the join only if the first currency name in the update falls into the thread's partition.

» The partitioning is done by the first letter of the symbol, with interleaving: the symbols starting with A are handled
by the thread 0, with B by thread 1, and so on until the threads end, and then continuing again with the thread 0. A
production-ready implementation would use a hash function instead. But the interleaving approach makes much easier
to predict, which symbol goes to which thread for the demonstration.

» Naturally, al this means that the loop of 3 currencies might get created by a change in one pair and then very quickly
disappear by a change to another pair.of currencies. So the post-reordering of the result isimportant to keep the things
consistent.

I've also added a tweak allowing to artificially slow down the thread 0, making the incorrect order show up reliably, and
really exercise the reordering code. For example, suppose the following input was sent quickly:

OP_I NSERT, AAA, BBB, 1. 30
OP_I NSERT, BBB, AAA, 0. 74
OP_I NSERT, AAA, CCC, 1. 98
OP_I NSERT, CCC, AAA, 0. 49
OP_I NSERT, BBB, CCC, 1. 28
OP_I NSERT, CCC, BBB, 0. 78
OP_DELETE, BBB, AAA, 0. 74
OP_I NSERT, BBB, AAA, 0. 64

With two threads, and thread 0 working slowly, it would produce the raw result:

The threaded dreaded diamond and data reordering 327

BEG N OP_I NSERT seq="2" triead="1"

BEG N OP_I NSERT seq="5" triead="1"

BEG N OP_I NSERT seq="7" triead="1"

result OP_DELETE ccyl="AAA" ccy2="CCC' ccy3="BBB" ratel="1.98"
rate2="0.78" rate3="0.74" |ooprate="1.142856"

BEG N OP_I NSERT seq="8" triead="1"

BEG N OP_I NSERT seq="1" triead="0"

BEG N OP_I NSERT seq="3" triead="0"

BEG N OP_I NSERT seq="4" triead="0"

BEG N OP_I NSERT seq="6" triead="0"

result OP_I NSERT ccyl="AAA" ccy2="CCC' ccy3="BBB" ratel="1.98"
rate2="0.78" rate3="0.74" |ooprate="1.142856"

Here the BEGIN lines are generated by the code and show the sequence number of the input row and the id of the thread
that did the join. They represent the“ BEGIN_" rowops of the trays that contain the transactions, and all the following
result lines until the next BEGIN belong in the same tray. The result lines show the arbitration opportunities produced by
the join. Obviously, not every update produces a new opportunity, most of them don't. But the INSERT and DELETE in
the result come in the wrong order: the update 7 had overtaken the update 6.

The post-reordering comes to the resque and restores the order:

BEG N OP_I NSERT seq="1" triead="0"
BEG N OP_I NSERT seq="2" triead="1"
BEG N OP_I NSERT seq="3" triead="0"
BEG N OP_I NSERT seq="4" triead="0"
BEG N OP_I NSERT seq="5" triead="1"
BEG N OP_I NSERT seq="6" triead="0"

result OP_I NSERT ccyl="AAA" ccy2="CCC' ccy3="BBB" ratel="1.98"
rate2="0.78" rate3="0.74" |ooprate="1.142856"

BEG N OP_I| NSERT seq="7" triead="1"

result OP_DELETE ccyl="AAA" ccy2="CCC' ccy3="BBB" ratel="1.98"
rate2="0.78" rate3="0.74" |ooprate="1.142856"

BEG N OP_I NSERT seq="8" triead="1"

Asyou can see, now the sequence numbers go in the sequential order.

And finally the code of the example. I've written it with the simple approach of “read all stdin, process, print all to stdout”.
It's easier thisway, and anyway to demonstrate the rowop reordering, all the input hasto be sent quickly in one chunk. The
exampleisfoundint / xFor kJoi nM . t . The application starts as:

Triceps::Triead::startHere(
app => "ForkJoin",
thread => "min",
mai n => \ &mai nT,
wor kers => 2,
del ay => 0.02,

)
Themain thread is:

sub mai nT # (@pts)
{
ny $opts = {};
&Triceps:: Opt::parse("mai nT", $opts, {@riceps::Triead::opts
workers => [1, undef], # nunber of worker threads
delay => [0, undef], # artificial delay for the Oth thread
@)
undef @; # avoids a leak in threads nodul e
ny $owner = $opts->{owner};
ny $app = $owner->app();
ny $unit = $owner->unit();

328 Multithreading

So far the pretty standard boilerplate with the argument parsing.

my $rtRate = Triceps:: RowType->new(# an exchange rate between two currencies
ccyl => "string", # currency code
ccy2 => "string", # currency code
rate => "float64", # nmultiplier when exchanging ccyl to ccy2

)

the resulting trade recommendati ons
my $rtResult = Triceps:: RowlType- >new(
triead => "int32", # id of the thread that produced it
ccyl => "string", # currency code
ccy2 => "string", # currency code
ccy3 => "string", # currency code
ratel => "f| oat 64",
rate2 => "f| oat 64",
rate3 => "f| oat 64",
| ooprate => "fl oat 64",

);
The row types originate from the self-join example code, unchanged.

each tray gets sequentially nunbered and franed
my $rtFrame = Triceps:: RowType- >new(

seq => "int64", # sequence nunber

triead => "int32", # id of the thread that produced it (optional)
)

the plain-text output of the result
ny $rtPrint = Triceps:: RowType- >new(
text => "string",

)

Thes definitions of the service row types. The frame row type is used to send the information about the sequence number
inthe“ BEGIN " label. The print row typeis used to send the text for printing back to the main thread.

the input data
ny $faln = $owner - >makeNexus(
name => "input",
| abel s => [
rate => $rtRate,
BEGA N => $rtFrane,
1,
i mport => "none",

)

the raw result collected fromthe workers
ny $f aRes = $owner - >makeNexus(
nane => "result",
| abels => [
result => $rtResult,
BEG@ N => $rtFrane,
I,
i mport => "none",

)

ny $faPrint = $owner->makeNexus(
name => "print",
| abels => [
raw => $rtPrint, # in raw order as received by collator
cooked => $rtPrint, # after collation

1

The threaded dreaded diamond and data reordering 329

i mport => "reader",

)

The processing will go in essentially a pipeline: “read the input -> process in the worker threads -> collate -> print in the
main thread”. A nexusis defined for each connection between the stages of the pipeline. The worker thread stage spreads
into multiple parallel threads for parititoned data, then joining the data paths back together in the collator.

Triceps::Triead::start(
app => $app->get Nane(),
thread => "reader",
nmain => \ & eaderT,
to => $owner->get Nane() . "/input",

)

for (nmy $i = 0; $i < $opts->{workers}; $i++) {
Triceps::Triead::start(
app => $app->get Nane(),
thread => "worker$i",
mai n => \ &wor ker T,
from=> $owner->get Nane() . "/input",
to => $owner->get Nane() . "/result",
delay => ($i == 0? $opts->{delay} : 0),
wor kers => $opt s- >{wor ker s},
identity => $i,
)
}

Triceps::Triead::start(
app => $app->get Nane(),
thread => "collator",
main => \&col |l atorT,
from=> $owner->get Nane() . "/result",
to => $owner->get Nane() . "/print",

)

ny @awp; # the print in original order
ny @ookedp; # the print in collated order

$f aPri nt - >get Label ("raw') - >makeChai ned(" | bRawP", undef, sub {
push @awp, $_[1]->get Row()->get("text");
1)
$f aPri nt - >get Label (" cooked") - >nakeChai ned("| bCookedP", undef, sub {
push @ookedp, $_[1]->get Row()->get("text");
1

$owner - >r eadyReady() ;
$owner - >mai nLoop() ;

print("--- raw ---\n", join("\n", @awp), "\n");
print("--- cooked ---\n", join("\n", @ookedp), "\n");
}

All the threads get started and instructed to connect to the appropriate nexuses. The collator will send the data for printing
twice: first timein the order it was received (“raw”), second time in the order after collation (“ cooked”).

sub readerT # (@pts)
{
ny $opts = {};
&Triceps:: Opt::parse("readerT", $opts, {@riceps::Triead::opts,
to => [undef, \&Triceps::Opt::ck_mandatory], # dest nexus

}, @)

330 Multithreading

undef @; # avoids a leak in threads nodul e
ny $owner = $opts->{owner};
ny $unit = $owner->unit();

ny $faln = $owner->i nport Nexus(
from => $opts->{to},
import => "witer",

)

ny $l bRate = $fal n->get Label ("rate");

ny $l bBegi n = $fal n->get Label ("_BEA N_");

END is always defined, even if not defined explicitly
nmy $l bEnd = $f al n- >get Label ("_END ");

Thisdemonstratesthat thelabels“ BEGIN_" and“ _END_" always get defined in each nexus, even if they are not defined
explicitly. Here“ BEGIN_" was defined explicitly but “ END_" was not, and nevertheless it can be found and used.

ny $seq = 0; # the sequence
$owner - >r eadyReady() ;

whi | e(<STDI N>) {
chonp;

++$seq; # starts with 1

$uni t - >makeHashCal | ($l bBegi n, "OP_I NSERT", seq => $seq);
ny @ata = split(/,/); # starts with a string opcode
$uni t - >makeArrayCal | ($l bRate, @lata);

calling _END_ is an equival ent of flushWiter()

$uni t - >makeHashCal | ($l bEnd, "OP_I NSERT");

}
{
drain the pipeline before shutting down
ny $ad = Triceps:: Aut oDrai n: : makeShar ed($owner) ;
$owner - >app() - >shut down() ;
}
}

Each input row is sent through in a separate transaction, or in another word, a separate tray. The “_BEGIN " label car-
ries the sequence number of the tray. The trays can as well be sent on with Tri eadOaner: : fl ushWiters() or
Facet:: flushWiter(),butl wantedto show that you can also flush it by calling the“ END_" label.

sub workerT # (@pts)
{
ny $opts = {};
&Triceps:: Opt::parse("workerT", $opts, {@riceps::Triead::opts
from=> [undef, \&Triceps::Opt::ck_nandatory], # src nexus
to => [undef, \&Triceps::Opt::ck_mandatory], # dest nexus
delay => [0, undef], # processing del ay
workers => [undef, \&Triceps:: Opt::ck_mandatory], # how many workers
identity => [undef, \&Triceps::Opt::ck_nmandatory], # which one is us
b @);
undef @; # avoids a leak in threads nodul e
ny $owner = $opts->{owner};
ny $unit = $owner->unit();
ny $del ay = $opts->{del ay};
nmy $workers = $opts->{workers};
ny $identity = $opts->{identity};
ny

$faln = $owner - >i nmport Nexus(
from=> $opts->{front,

The threaded dreaded diamond and data reordering 331

i mport => "reader",

)

ny $f aRes = $owner - >i nport Nexus(
from => $opts->{to},
import => "witer",

);

my $l bl nRate = $faln->getlLabel ("rate");

ny $l bResult = $f aRes->get Label ("result");

my $I bResBegin = $f aRes- >get Label (" _BEG N_");
nmy $l bResEnd = $f aRes- >get Label ("_END_");

The worker thread starts with the pretty usual boilerplate.

ny $seq; # sequence fromthe frane | abels

ny $conpute; # the conputation is to be done by this [|abel

$f al n- >get Label ("_BEG N_") - >makeChai ned("| bl nBegi n", undef, sub {
$seq = $_[1] - >get Row() - >get ("seq");

1)

The processing of each transaction starts by remembering its sequence number from the“_BEGIN_" label. It doesn't send
a“_BEGIN_” to the output yet because it doesn't know yet if it will be producing the output. All the threads get the same
input, to be able to update their copies of the table, but then only one thread produces the output. And the thread doesn't
know whether it will be the one producing the output until it knows the primary key of the data. So it can start sending the
output only after it had seen the data. This whole scheme works for this example because thereis exactly one datarow per
each transaction. A moregeneral approach might beto have the reader thread decide up front, which worker will producethe
result and put thisinformation (as either a copy of the primary key or the computed thread id) into the“_BEGIN_" rowop.

the table gets updated for every incoming rate
$l bl nRat e- >makeChai ned("1 bl n", undef, sub {
my $ccyl = $_[1]->get Row()->get("ccyl");
decide, whether this thread is to performthe join
$conpute = ((ord(substr($ccyl, 0, 1)) - ord('A)) % $workers == S$identity);

this relies on every Xtray containing only one rowop,

otherwi se one Xtray will be split into nultiple

if ($conpute) {
$uni t - >makeHashCal | ($l bResBegi n, "OP_I NSERT", seq => $seq, triead => $identity);
sel ect (undef, undef, undef, $delay) if ($delay);

}

even with $conpute is set, this might produce sone output or not,
but the frame still goes out every tinme $conpute is set, because
BEGN_ forces it

$uni t - >cal | ($l bRat el nput - >adopt ($_[1]));

1

This code makes the decision of whether this join is to be computed for this thread. The decisiton is remembered in the
flag $conput e, and used to generate the “_BEGIN_" rowop for the output. Then the table gets updated in any case
($! bRat el nput is the table's input label). I've skipped over the table creation code, it's unchanged from the original
self-join example.

$t Rat e- >get Qut put Label () - >nakeChai ned("| bConmput e", undef, sub {
return if (!$conpute); # not this thread' s problem

|f (%l ooprate > 1) {
$unit->call ($result);

332 Multithreading

}

1)
R

$owner - >r eadyReady() ;

$owner - >mai nLoop() ;

}

Here again |'ve skipped over the way the result is computed because it's lengthy and unchanged from the original example.
The important part isthat if the $conput e flagis not set, the whole self-joining computation is not performed.

The“_END_" label is not touched, the flushing of transactionsistaken care of by themai nLoop() . Note that the“_BE-
GIN_” label is always sent if the data is designated to this thread, even if no output as such is produced. This is done
because the collator needs to get an uninterrupted sequence of transactions. Otherwise it would not be able to say if some
transaction had been dropped or only delayed.

sub collatorT # (@pts)
{

my $opts = {};

&Triceps::Opt::parse("collatorT", $opts, {@riceps::Triead::opts,
from=> [undef, \&Triceps::Opt::ck_nandatory], # src nexus
to => [undef, \&Triceps::Opt::ck_mandatory], # dest nexus

}o@);

undef @; # avoids a leak in threads nodul e

nmy $owner = $opts->{owner};

ny $unit = $owner->unit();

ny $f aRes = $owner - >i npor t Nexus(
from=> $opts->{front,
i mport => "reader",

)

nmy $faPrint = $owner->i nport Nexus(
from=> $opts->{to},
import => "witer",

~

$l bResul t
$l bResBegi
$! bResEnd

$f aRes- >get Label ("resul t");
= $f aRes- >get Label (" _BEG N ");
$f aRes- >get Label (" _END_");

1> 1

$l bPrint Raw = $f aPri nt - >get Label ("raw');
$l bPri nt Cooked = $faPrint->get Label ("cooked");

$seq = 1; # next expected sequence

@rays; # trays held for reordering: $trays[0] is the slot for sequence $seq
(only of course that slot will be always enmpty but the follow ng ones nay
contain the trays that arrived out of order)

ny $curseq; # the sequence of the current arriving tray

33 33 333

The collator thread starts very much as usual. It has its expectation of the next tray in order, which gets set correctly. The
trays that arrive out of order will be buffered in the array @ r ays. Well, more exactly, for simplicity, all the trays get
buffered there and then sent on if their turn has come. But it's possible to make an optimized version that would let the
data flow through immediately if it'sarriving in order.

The processing of data after it has been "cooked", i.e. reordered.
ny $bi ndRes = Triceps:: FnBi ndi ng- >new(

nane => "bi ndRes",

on => $f aRes->get FnReturn(),

The threaded dreaded diamond and data reordering 333

unit => $unit,
withTray => 1,
| abels => [
" BEG N " => sub {
$uni t - >makeHashCal | ($l bPri nt Cooked, "OP_I NSERT", text => $ [1]->printP("BEG N'));
}

esult" => sub {
$uni t - >makeHashCal | ($l bPri nt Cooked, "OP_I NSERT", text => $ [1]->printP("result"));
}
1.
)
$f aRes- >get FnRet ur n() - >push($bi ndRes); # will stay permanently

The data gets collected into trays through a binding that gets permanently pushed onto the facet's FnReturn. Then when
the tray's turn comes, it will be simply called and will produce the print calls for the cooked data order.

mani pul ati on of the reordering,
and al ong the way reporting of the raw sequence
$l bResBegi n- >makeChai ned("| bBegi n", undef, sub {
$uni t - >makeHashCal | ($l bPri nt Raw, "OP_I NSERT", text => $ [1]->printP("BEG N'));
$curseq = $_[1]->get Row) - >get ("seq");
1)
$l bResul t - >nakeChai ned("| bResul t", undef, sub {
$uni t - >makeHashCal | ($l bPrint Raw, "OP_I NSERT", text => $ [1]->printP("result"));
1)
$l bResEnd- >nakeChai ned("| bEnd", undef, sub {
ny $tray = $bi ndRes->swapTray();
if ($curseq == $seq) {
$unit->call ($tray);
shift @rays;
$seq++;
while ($#trays >= 0 && defined($trays[0])) {
flush the trays that arrived m sordered
$unit->call (shift @rays);
$seq++;
}
} elsif ($curseq > $seq) {
$trays[$curseq- $seq] = $tray; # renenber for the future
} else {
shoul d never happen but just in case
$unit->call ($tray);
}
1)

$owner - >r eadyReady() ;

$owner - >nmai nLoop() ;

b

Theinput rowops are not only collected in the binding's tray but also chained directly to the labels that print the raw order
of arrival. The handling of “ BEGIN_" also remembers its sequence number.

The handler of “_END_" (the“_END_" rowops get produced implicitly at the end of transaction) then does the heavy
lifting. It looks at the sequence number remembered from“_BEGIN_" and makes the decision. If the received sequenceis
the next expected one, the data collected in the tray gets sent on immediately, and then the contents of the @ r ays array
continues being sent on until it hits ablank spot of missing data. Or if the received sequence leaves agap, thetray is placed
into an appropriate spot in @ r ays for later processing.

This whole logic can be encapsulated in a class but | haven't decided yet on the best way to do it. Maybe some time in
the future.

334 Multithreading

Chapter 17. TQL, Triceps Trivial Query
Language

17.1. Introduction to TQL

Triceps by itself isalibrary that can be embedded into any program to add the CEP functionality. But sometimes having a
ready server process that handles the communications and queries and wraps the CEP logic within itself is a great conve-
nience. TQL, the Triceps Trivial Query Language, is used in this server.

The server is useful as both atool to play with Triceps programs and as an example of implementation. It al started with
the example of simple queriesin Section 7.9: “Main loop with a socket” (p. 54) , then I've wanted to use the queries to
demonstrate a feature of the streaming functions, then |'ve wanted to use it for a threaded logic demonstration, so it has
been growing over time.

Thisserver and the TQL are so far of only an example quality, but TQL isextensible and it already can do someinteresting
things. The “example quality” means that they work but the set of commands is limited and they don't have an extensive
set of tests for every possibility, so it could happen that some corner cases don't work so well.

Why not SQL, after al, there are multiple parser building tools available in Perl? Partially, because | wanted to keep it
trivial and to avoid introducing extra dependencies, especialy just for the examples. Partially, because | don't like SQL.
| think that the queries can be expressed much more naturally in the form of shell-like pipelines. At one of my past jobs
| wrote a simple toolkit for querying and comparison of the CSV files (yeah, | didn't find the DBD::CSV module), I've
used a pipeline semantics and it worked pretty well. It also did things that are quite difficult with SQL, like mass renaming
and reordering of fields, and diffing. Although TQL is not a descendant of the language |'ve used in that query todl, itisa
further development of the pipeline idea. As I've found later, there are other products that also use the pipeline approach
for the queries, such as the PowerShell.

17.2. TQL syntax

Syntactically, TQL isvery simple: its query is represented as a nested list, similar to Tcl (or if you like Lisp better, you
can think that it's similar to Lisp but with different parentheses). A list is surrounded by curly braces “{}”. The elements
of alist are either other lists or words consisting of non-space characters.

{wordl {word21 word22} word3}

Unlike Tcl, there are no quotes in the TQL syntax, the quote characters are just the normal word characters. If you want
to include spaces into aword, you use the curly braces instead of the quotes.

{ this is a {brace-enquoted} string with spaces and nested braces }

Note that the spaces inside a list are used as delimiters and thrown away but within a brace-quoted word-string they are
significant. How do you know, which way they will be treated in a particular case? It all depends on what is expected in
this case. If the command expects a string as an argument, it will treat it as a string. If the command expects alist as an
argument, it will treat it asalist.

What if you need to include an unbalanced brace character inside astring? Escape it with abackslash, “\{”. The other usual
Perl backslash sequences work too (though in the future TQL may get separated from Perl and then only the C sequences
will work, that isto be seen). Any non-alphanumeric characters (including spaces) can be prepended with a backslash too.
An important point is that when you build the lists, unlike shell, and like Tcl, you do the backslash escaping only once,
when accepting araw string. After that you can include the string with escapesinto the lists of any depth without any extra
escapes (and you must not add any extra escapes in the lists).

335

Unlike shell, you can't combine a single string out of the quoted and unquoted parts. Instead the quoting braces work as
implicit separators. For example, if you specify alist as{a{b} c d}, you don't get two strings “abc” and “d”, you get four
ﬁrl ngS 13 aZ! , “ bn , 13 CH , “ dn .

The parsing of the lists is done with the package Braced, with some more examples shown in Section 19.16: “Braced
reference” (p. 391) .

A TQL query isalist that represents a pipeline. Each element of the list is a command. The first command reads the data
from atable, and the following commands perform transformations on that data. For example:

{read table tWndow} {project fields {synbol price}} {print tokenized
0}

If the print command ismissing at the end of the pipeline, it will be added implicitly, with the default arguments: { pri nt } .

The arguments of each TQL command are always in the option name-value format, very much like the Perl constructors
of many Triceps objects. There aren't any argumentsin TQL that go by themselves without an option name.

So for example the command r ead above has an option “table” with value “tWindow”. The command pr oj ect has
an option “fields’ with alist value of two elements. In this case the elements are simple words and don't need the further
bracing. But the braces around it won't hurt. Say, if you wanted to rename the field “price” to “trade price”, you use the
Triceps::Fields::filter() syntaxforit, and even though the format doesn't contain any spaces and can be till
used just as aword, it looks nicer with the braces around it:

{project fields {synbol {price/trade_price} }}

17.3. TQL commands

I'm sure that the list of commands and their optionswill expand and change over time. So far the supported commands are:

read
Defines atable to read from and starts the command pipeline.

Options:

t abl e - name of the table to read from. When a Triceps model gets wrapped in the server, it defines, what tables
it has available.

pr oj ect
Projects (and possibly renames) a subset of fields in the current pipeline. In other words, all the files besides the
specified ones get thrown away.
Options:

fiel ds - anarray of field definitionsin the syntax of Tri ceps:: Fields::filter() (sameasinthejoins),
as described in Section 19.12: “Fields reference” (p. 384) .

print
The last command of the pipeline, which prints the results. If not used explicitly, the query adds this command implic-
itly at the end of the pipeline, with the default options.
Options:

t okeni zed (optional) - Flag: print in the name-value format, as in Row::printP(). Otherwise prints only the values
inthe CSV format. Default: 1.

336 TQL, Triceps Trivial Query Language

join
Joins the current pipeline with another table. This is the functionally similar to LookupJoin, although the options are
closer to JoinTwo.

Options:

t abl e - name of the table to join with. The current pipeline is considered the “left side”, the table the “right side”.
The duplicate key fields on the right side are aways excluded from the result, as by the LookupJoin optionf i el ds-
Dr opRi ght Key => 1.

ri ght | dxPat h (optiona) - path name of the table'sindex on which to join. Asusual, the path is an array of nested
index type names. If this option is not specified, the index path will be found automatically by the join fields.

by (semi-optional) - thejoin equality condition specified aspairsof fields. Similarly to JoinTwo, it'sasingle-level array
with the fields logically paired:{leftFld1 rightFld1 leftFld2 rightFld2 ... }. Options “by” and “byLeft” are mutually
exclusive, and one of them must be present.

byLeft (semi-optional) - the join equality condition specified as a transformation on the left-side field set in the
syntax of Tri ceps::Fields::filter(),withanimplicitelement{!.*} added at the end. Options “by” and
“byLeft” are mutually exclusive, and one of them must be present.

| ef t Fi el ds (optional) - thelist of patternsfor the left-side fields to pass through and possibly rename, in the syntax
of Triceps::Fields::filter().Default: passall, with the same name.

ri ght Fi el ds (optional) - the list of patterns for the right-side fields to pass through and possibly rename, in the
syntax of Tri ceps:: Fields::filter().Thekey fieldsgetimplicitly removed before. Default: pass all, with
the same name.

t ype (optiond) - type of thejoin, “inner” or “left”. Default: “inner”.

wher e
Filters/selects the rows.

Options:

i strue - aPerl expression, the condition for the rows to pass through. The particularly dangerous constructions are
not alowed in the expression, including the loops and the general function calls. The fields of the row are referred to
as$% i el d, these references get translated before the expression is compiled.

Here are some examples of the Tql queries, with results produced from the output of the code examples that will be shown
below.

query, {read table tSynbol}

query OP_I NSERT synbol =" AAA" nane="Absol ute Auto Anal ytics Inc"
eps="0.5"

+EOD, OP_NOP, query

Reads the stock symbol information table and prints it in the default tokenized format. The input line is CSV, containing
as usua in the examples from Section 7.9: “Main loop with a socket” (p. 54) , the command and the data for it. Here the
command “query” has been defined to handle the TQL queries. It's possible to define multiple TQL-handling commands
inaserver, in case if you want them to query different units, or different subsets of the tables. The parsing of the data part
is smart enough not to break up the text of the query on the commasin it.

The tokenized result format is a bit messy for now, amix of tokenized data lines and a CSV end-of-data line.

In the simpler examplesin Section 7.9: “Main loop with asocket” (p. 54) the end-of-data has been marked by either arow
with opcode OP_NOP or not marked at all. For the TQL queries I've decided to try out a different approach: send a CSV

TQL commands 337

row on the pseudo-label “+EOD” with the value equal to the name of the command that has been completed. The labels
with names starting with “+” are special in this convention, they represent some kind of metadata.

query, {read table tWndow} {project fields {synbol price}}
query OP_I NSERT synbol =" AAA" price="20"

query OP_I NSERT synbol =" AAA" price="30"

+EOD, OP_NOP, query

Reads the trade window rows and projects the fields “symbol” and “price” from them.

query, {read table tWndow} {project fields {synbol price}} {print
t okeni zed 0}

query, OP_I NSERT, AAA, 20

query, OP_I NSERT, AAA, 30

+EQOD, OP_NOP, query

The same, only explicitly prints the datain the CSV format.

query, {read table tWndow} {where istrue {$%rice == 20}}
query OP_I NSERT id="3" synbol =" AAA" price="20" size="20"
+EQD, OP_NOP, query

Selects the trade window row with price equal to 20.

query, {read table tWndow} {join table tSynbol byLeft {symnbol}}

query OP_I NSERT id="3" synbol =" AAA" price="20" size="20"
name="Absol ute Auto Analytics |Inc" eps="0.5"

query OP_I NSERT id="5" synbol =" AAA" price="30" size="30"
name="Absol ute Auto Analytics |Inc" eps="0.5"

+EOD, OP_NOP, query

Reads the trade window and enriches it by joining with the symbol information.

A nice feature of TQL is that it allows to combine the operations in the pipeline in any order, repeated any number of
times. For example, you can read atable, filter it, join with another table, filter again, join with the third table, filter again
and so on. SQL in the same situation has to resort to specially named clauses, for example WHERE filters before grouping
and HAVING filters after grouping.

Of course, atypical smart SQL compiler would determine the earliest application point for each WHERE sub-expression
and build a similar pipeline. But TQL allows to keep the compiler trivial, following the explicit pipelining in the query.
And nothing really prevents a smart TQL compiler either, it could aswell analyze, split and reorder the pipeline stages.

As mentioned above, the TQL queries are compiled before the execution into the normal Triceps code. A query is built
in a separate unit. After the query is built, the data is fed into it to produce the result, and then the unit gets destroyed.
Potentially, TQL could be extended for writing the general Triceps programs as well.

17.4. TQL in a single-threaded server

The TQL support may be instantiated in both the single-threaded and multi-threaded applications. The single-threaded
support is simpler, so we'll look at it first. The TQL itself stays the same in both cases, and even the way to construct the
TQL server issimilar but then the way for the TQL queries to extract the data from the application is different.

The code that produced the query output examples from the previous section looks like this:

The basic table type to be used for querying.
Represents the trades reports.
our $rtTrade = Triceps:: RowlType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded

338 TQL, Triceps Trivial Query Language

price => "fl oat 64",
size => "float64", # nunber of shares traded

)

our $ttWndow = Triceps:: Tabl eType->new($rt Tr ade)
- >addSubl ndex(" bySynbol ",
Tri ceps: : Si npl eOr der edl ndex- >new(synbol => "ASC")
- >addSubl ndex("| ast 2",
Triceps:: | ndexType->newFi fo(limt => 2)
)
)

$ttWndow >initialize();

Represents the static infornation about a conpany.
our $rtSynbol = Triceps:: RowType- >new(

synbol => "string", # synbol nane

name => "string", # the official conpany nane

eps => "float64", # last quarter earnings per share

)

our $ttSynbol = Triceps:: Tabl eType->new($rt Synbol)
- >addSubl ndex(" bySynbol ",
Triceps:: I ndexType->newHashed(key => ["synbol" 1)
)

$ttSynmbol ->initialize();

ny $uTrades = Triceps:: Unit->new"uTrades");
ny $t Wndow = $uTrades- >nakeTabl e($tt W ndow, "t W ndow');
ny $t Synbol = $uTrades->nakeTabl e($tt Synbol, "t Synbol");

The information about tables, for querying.
ny $tql = Triceps:: X :Tql->new
name => "tql",
tables => |
$t W ndow,
$t Synbol ,
1,
)

ny %di spatch;

$di spat ch{ $t W ndow >get Nare() } $t W ndow >get | nput Label ();
$di spat ch{ $t Synbol - >get Nane() } $t Synbol - >get | nput Label ();
$di spatch{"query"} = sub { $tqgl->query(@); };

$di spatch{"exit"} = \&Triceps:: X :SinpleServer::exitFunc;

calls Triceps:: X :SinpleServer::startServer(0, \%li spatch);
Triceps:: X :DunmbCient::run(\%i spatch);

It's very much like the example shown before in Section 7.9: “Main loop with a socket” (p. 54) , with one of the dispatch
entries being a TQL query method. The list of tables is given to the Tql object which figures out al by itself how to run
the queries on them.

Just as before, DumbClient is a class for both starting the server and running the unit tests on it, so in reality the dispatch
tableishandled in Si npl eServer: :start Server ().

The dispatched labels have the CSV line received from the socket broken up into the fields and formed into the rowops
but the dispatched functions receive the whole argument line as the client had sent it. The functions can then do the text
parsing in their own way, which comesreal handy for TQL. The Tql : : quer y() method splits off the name of the label
to be used as the name of the query, and parses the rest as the query body.

TQL in a single-threaded server 339

Therearemultiplewaysto create aTql object. By default the option “tables’ listsall the queryabletables, and their “ natural”
names will be used in the queries, as was shown above. It's possible to specify the names explicitly as well:

ny $tqgl = Triceps:: X :Tgl->new
nane => "tql",
tables => [
$t W ndow,
$t Synbol ,
$t W ndow,
$t Synbol ,
1.
t abl eNames => [
"W ndow",
"symnbol ",
$t W ndow >get Name(),
$t Synbol - >get Name(),
1.
);

This version defines each table under two synonymous names. The tables and their names go in the parallel arraysin the
same order.

It's also possible to create a Tql object without tables, and add tablesto it later as they are created:

ny $tql = Triceps:: X :Tqgl->new(name => "tql");
$t gl - >addNanedTabl g(

wi ndow => $t W ndow,

synbol => $t Synbol ,

)
add 2nd tinme, with different names
$t gl - >addTabl e(

$t W ndow,

$t Synbol ,

)
$tqgl->initialize();

Multiple tables can be added in one method call, as shown here. The tables can be added with explicit names or with
“natural” names. After all the tables are added, the Tql object has to be initialized.

The two ways of creation are mutually exclusive: if the option “tables’ is used, the object will be initialized right away
in the constructor. If this option is absent, the explicit initialization has to be done later. The methods addTabl e() and
addNamedTabl e() cannot be used on aninitialized table, and quer y() cannot be used on an uninitialized table.

17.5. TQL in a multi-threaded server

Asthe single-threaded version of TQL works symbiotically with the SimpleServer, the multithreaded version works with
the ThreadedServer. The multithreaded version of TQL does all that the single-threaded one does, and more: it allows to
define the dynamic queries. Some day TQL might become the language to define the whole Triceps models.

One thread created by the programmer contains the “core logic” of the model. It doesn't technically have to be all in a
single thread: the data can be forwarded to the other threads and then the results forwarded back from them. But asingle
core logic thread is a convenient simplification. This thread has some input labels, to receive data from the outside, and
some tables with the computed results that can be read by TQL. Of course, it's entirely realistic to have also just the output
labels without tables, sending a stream of computed rowops, but again for simplicity let's leave this out for now.

This core logic thread creates a TQL instance, which listens on a socket, accepts the connections, forwards the input data
to the core logic, performs queries on the tables from the core logic and sends the results back to the client. To this end,
the TQL instance creates afew nexuses in the core logic thread and uses them to communicate between all the fragments.

340 TQL, Triceps Trivial Query Language

The input labels and tables in the core thread also get properly connected to these nexuses. Figure 17.1 shows the thread
structure, I'll use it for the reference throughout the discussion.

L

control ¥

Listener
Triead

App Core Triead
(contains input labels,
output tables, logic)

Client Reader C.lllﬁgta\év(r'lt)er Client Reader
Triead (1) (contains the Triead (2)
query logic)

Figure 17.1. Multithreaded TQL application structure.

Client Writer
Triead (2)
(contains the
query logic)

The corelogic thread then goes into its main loop and performs as its name says, the core logic computations.

Hereisavery smple example of a TQL application:

sub appCoreT # (@pts)

{

ny $opts = {};

&Triceps:: Opt:: parse("appCoreT", $opts, {@riceps::Triead::opts,
socket Nane => [undef, \&Triceps:: Opt::ck_nmandatory],

b @);

undef @; # avoids a leak in threads nodul e
ny $owner = $opts->{owner};

ny $app = $owner->app();

my $unit = Sowner->unit();

build the core logic

nmy $rtTrade = Triceps:: RowType- >new(
id=>"int32", # trade unique id
synbol => "string", # synbol traded
price => "fl oat 64",
size => "float64", # nunber of shares traded

)

nmy $ttWndow = Triceps:: Tabl eType->new $rt Tr ade)
- >addSubl ndex(" byl d",
Triceps:: Sinpl eOrderedl ndex->new(id => "ASC'")
)

$ttWndow >initialize();

TQL in a multi-threaded server

341

Represents the static infornation about a conpany.
nmy $rtSynmbol = Triceps:: RowType- >new(

synbol => "string", # synbol nane

name => "string", # the official conpany nane

eps => "float64", # last quarter earnings per share

)

ny $ttSynbol = Triceps:: Tabl eType- >new($rt Synbol)
- >addSubl ndex(" bySynbol ",
Tri ceps: : Si npl eOr der edl ndex- >new(synbol => "ASC")
)

$ttSynmbol ->initialize();

$uni t - >makeTabl e($t t W ndow, "t W ndow") ;
$uni t - >makeTabl e($tt Synmbol , "t Synbol ") ;

ny $t W ndow
ny $t Synbol

export the endpoints for TQL (it starts the |istener)
ny $tql = Triceps:: X :Tql->new
name => "tql",
tri eadOmer => $owner,
socket Name => $opt s- >{ socket Nane},
tables => |
$t W ndow,
$t Synbol ,
1.
t abl eNames => |
"wi ndow",
"synbol ",
1.
inputs => [
$t W ndow >get | nput Label (),
$t Synbol - >get | nput Label (),
1.
i nput Names => [
"wi ndow",
"synbol ",
1.
);

$owner - >r eadyReady() ;

$owner - >mai nLoop() ;

}

{
ny ($port, $thread) = Triceps:: X :ThreadedServer::start Server(

app => "appTql ",
mai n => \ &ppCor eT,
port => O,
fork => -1, # create a thread, not a process
)
}

This core logic is the same as in the single-threaded example; al it does is create two tables and then send the input data
into them. The server gets started in abackground thread (f or k => - 1) because this code is taken from atest that then
goes and runsthe expect with the ThreadedClient.

The specification of tables for TQL is the same as for the single-threaded version. The new options available only in the
multi-threaded mode are the “threadOwner”, “inputs’” and “inputNames’. The “threadOwner” is how TQL knows that it
must run in the multithreaded mode, and it's used to create the nexuses for communication between the core logic and

342 TQL, Triceps Trivial Query Language

the rest of TQL. The “inputs’ are needed because the multithreaded TQL parses and forwards the input data, unlike the
single-threaded version that relies on the SimpleServer to do that according to the user-defined dispatch table.

The names options don't have to be used: if you name your labels and tables nicely and suitable for the external vieweing,
the renaming-for-export can be skipped.

Similarly to the single-threaded version, if any of the options “tables’ or “inputs’ is used, the TQL object gets initial-
ized automatically, otherwise the tables and inputs can be added piecemeal with addTabl e() , addNanedTabl e(),
addl nput (), addNamed! nput (), and then the whole thing initialized manually.

Then the clients can establish the connections with the TQL server, send in the data and the queries. Tojump in, hereisa
trace of a simple session that sends some data, then does some table dumps and subscribes, not touching the queries yet.
I'll go through it fragment by fragment and explain the meaning. The dumps and subscribes were the warm-up exercises
before writing the full queries, but they're useful in their own right, and here they serve as the warm-up exercises for the
making of the queries!

The trace is marked with the client name “c1”, just as it isin Section 16.6: “Dynamic threads and fragments in a socket
server” (p. 306) , sinceit'salso atrace from SimpleClient.

connect cl
cl| ready

The“connect” isnot an actual command send but just the indication in the trace that the connection was set up by the client
“cl”. The “ready” response is sent when the connection is opened.

cl| subscri be, s1, synbol
cl| subscri be, s1, synbol

This is a subscription request. It means “1'm not interested in the current state of a table but send me al the updates”.
The response is the mirror of the request, so that the client knows that the request has been processed. The format of the
requests is different in the multi-threaded mode than in the single-threaded, it has the extra elements. The first element
is always the command. “s1” is the unique identifier of the request, so that the client can match together the responses it
received to the requestsit sent. Keeping the uniquenessis up to the client, the server may refuse the requests with duplicate
identifiers. And “symbol” is the name of the table. Once a subscription isin place, there is no way to unsubscribe other
than by disconnecting the client (it's doable but adds complications, and | wanted to skip over the nonessential parts).
Subscribing multiple times to the same table will send a confirmation every time but the repeated confirmations will have
no effect: only one copy of the datawill be sent anyway.

Side-tracking a hit, if a second subscription attempt is to be done with the same id, the error would look like:
error,sl,Duplicate id 'sl1l': query ids nust be unique,bad_id,sl

The response type field contains “error”, followed by the id of the request, the error message, the error name, and the data
that caused the error.

Let's send the data into the model:

cl| d, synmbol , OP_I NSERT, ABC, ABC Corp, 1.0
cl| d, synmbol , OP_I NSERT, ABC, ABC Corp, 1

And since it propagates through the subscription, the data gets sent back too. The “symbol” here means two different
things: on the input side it's the name of the label where the datais sent, on the output side it's the name of the table that
has been subscribed to.

The datalines start with the command “d” (since the datais sent much more frequently than the commands, I've picked a
short one-letter command name for it), then the label/table name, opcode and the row fieldsin CSV format.

cllconfirmecfl
cliconfirmecfl,,,

TQL in a multi-threaded server 343

The“confirm” command providesaway for the client to check that the datait send had propagated through the model. And
it doesn't have to subscribe back to the data and read them. Send some data lines, then send the “confirm” command and
wait for it to come back (again, the unique id allows to keep multiple confirmationsin flight if you please). This command
doesn't guarantee that all the clients have seen the results from that data. It only guarantees that the core logic had seen
the data, and more weakly guarantees that the data had been processed by the core logic, and this particular client had
already seen all the results from it.

Why weakly? It has to do with the way it works inside, and it depends on the core logic. If the core logic consists of one
thread, the guaranteeis quite strong. But if the core logic farms out the work from the main thread to the other threads and
then collects the results back, the guarantee breaks.

You can seein Figure 17.1 that unlike the chat server shown Section 16.6: “Dynamic threads and fragments in a socket
server” (p. 306) , TQL doesn't have any private nexuses for communication between the reader and writer threads of a
client. Instead it relies on the same input and output nexuses, adding a control label to them, to forward the commands
from the reader to the writer. The TQL object in the core logic thread creates a short-circuit connection between the control
labelsin the input and output nexuses, forwarding the commands. And if the core logic all runsin one thread, this creates
a natural pipeline: the data comes in, gets processed, comes out, the “confirm” command comes in, comes out after the
data. But if the core logic farms out the work to more threads, the confirmation can “jump the line” because its path is
adirect short circuit.

cl|drain,drl
cl|drain,drl,,,

The“drain” isan analog of “confirm” but morereliable and slower: the reader thread drainsthe whole model before sending
the command on. This guarantees that all the processing is done, and all the output from it has been sent to all the clients.

c1| dunp, d2, synbol

cl| startdunp, d2, synbol

c1| d, synmbol , OP_I NSERT, ABC, ABC Corp, 1
c1| dunp, d2, synbol

The “dump” command dumps the current contents of atable. Its result starts with “startdump”, and the same id and table
name as in the request, then goes the data (all with OP_INSERT), finishing with the completion confirmation echoing the
original command. The dump is atomic, the contents of the table doesn't change in the middle of the dump. However if a
subscription on this table is active, the data rows from that subscription may come before and after the dump.

cl| dunpsub, ds3, synbol

cl| startdunp, ds3, synbol

c1| d, synbol , OP_I NSERT, ABC, ABC Cor p, 1
cl| dunpsub, ds3, synbol

The “dumpsub” command is a combination of a dump and subscribe; get theinitia state and then get all the updates. The
confirmation of “dumpsub” marks the boundary between the origina dump and the following updates.

cl| d, synmbol , OP_I NSERT, DEF, Def ense Corp, 2.0
cl| d, synmbol , OP_I NSERT, DEF, Def ense Corp, 2

Send some more data, and it comes back only once, even though the subscription was done twice: once in “ subscribe” and
oncein “dumpsub”. The repeated subscription requests simply get consumed into one subscription.

c1| d, wi ndow, OP_I NSERT, 1, ABC, 101, 10
This sends arow to the other table but nothing comes back because there is no subscription to that table.

cl| dunpsub, ds4, wi ndow

cl| startdunp, ds4, wi ndow

cl| d, wi ndow, OP_I| NSERT, 1, ABC, 101, 10
cl| dunpsub, ds4, wi ndow

cl| d, wi ndow, OP_I| NSERT, 2, ABC, 102, 12
cl| d, wi ndow, OP_I| NSERT, 2, ABC, 102, 12

344 TQL, Triceps Trivial Query Language

This demonstrates the pure dump-and-subscribe without any interventions.

c1| shut down
c1| shut down, , ,,
cl| __EOF

And the shutdown command works the same as in the chat server, draning and then shutting down the whole server.

Now on to the queries.

connect cl
cl| ready
cl| d, synmbol , OP_I NSERT, ABC, ABC Corp, 1.0

Starts a client connection and sends some data.

cl| querysub, q1, queryl, {read tabl e synbol }{print tokenized 0}
cl| d, queryl, OP_I NSERT, ABC, ABC Corp, 1
cl| querysub, ql, queryl

The“querysub” command does the “ query-and-subscribe’: readstheinitial state of the table, processed through the query,
and then subscribes to any future updates. The single-threaded variety of TQL doesn't do this, it does just the one-time
gueries. The multithreaded TQL could potentially do the one-time queries, and also just the subscribes without the initial
state, but so far I've been cutting corners and the only thing that's actually available is the combination of two, the “query-
sub”.

Similarly to the other commands, “ql” isthe command identifier. The next field “ queryl” isthe name for the query, it'sthe
namethat will be shown for the datalines coming out of the query. And then goesthe query in the brace-quoted format, same
asinthe single-threaded TQL (and thereis no further splitting by commas, so the commas can be used freely in the query).

The identifier and the name of the query sound kind of redundant. But the client may generate them in different ways and
need both. The name hasthe more symbolic character. Theidentifier can be generated as a sequence of numbers, so that the
client can keep track of its progress more easily. And the error reportsinclude theidentifier but not the query namein them.

For the query, there is no special line coming out before the initial dump. Supposedly, there would not be more than one
guery in flight with the same name, so they could be easily told apart based on the name in the datalines. Thereisalso an
underlying consideration that when the query involvesajoin, in the future theinitial dump might be happening in multiple
chunks, requiring to either surround every chunk with the start-end lines or just let them go without the extra notifications,
asthey are now.

And the initial dump ends as usual with getting the echo of the command (without the query part) back.
This particular query is very simple and equivalent to a“dumpsub”.

cl| d, synmbol , OP_I NSERT, DEF, Def ense Corp, 2.0
cl| d, queryl, OP_| NSERT, DEF, Def ense Corp, 2

Send more data and it will come out of the query.

cl| querysub, q2, query2, {read tabl e synbol }{where istrue {$¥%synbol =~
I"A}}{project fields {synbol eps}}

cl|t, query2, query2 OP_I NSERT synbol =" ABC' eps="1"

cl| querysub, g2, query2

This query is more complicated, doing a selection (the “where” query command) and projection. It also prints the results
in the tokenized format (the “print” command gets added automatically if it wasn't used explicitly, and the default options
for it enable the tokenized format).

Thetokenized lines come out with the command “t”, query name and then the contents of the row. The query name happens
to be sent twice, and I'm not sure yet if it's afeature or a bug.

TQL in a multi-threaded server 345

cl| d, synmbol , OP_I NSERT, AAA, Absol ute Auto Analytics Inc, 3.0
cl| d, queryl, OP_I NSERT, AAA, Absol ute Auto Analytics Inc,3
cl|t, query2, query2 OP_I NSERT synbol =" AAA" eps="3"

cl| d, synbol , OP_DELETE, DEF, Def ense Corp, 2.0

cl| d, queryl, OP_DELETE, DEF, Def ense Corp, 2

More examples of the data sent, getting processed by both queries. In the second case the “where” filters out the row from
query2, so only queryl produces the result.

cl| shut down
cl| shutdown, ,,,
cl| __EOF _

And the shutdown as usual.

Now the piece de resistance: queries with joins.

connect cl

cl| ready

cl| d, synbol , OP_I NSERT, ABC, ABC Corp, 2.0

cl| d, synbol , OP_| NSERT, DEF, Def ense Corp, 2.0

cl| d, synbol , OP_I NSERT, AAA, Absol ute Auto Analytics Inc,3.0
cl| d, wi ndow, OP_I NSERT, 1, AAA, 12, 100

Connect and send some starting data.

cl| querysub, q1, queryl, {read tabl e wi ndow}{join table synmbol bylLeft
{synbol} type left}

cl|t, queryl, queryl OP_I NSERT id="1" synbol ="AAA" price="12" size="100"
name="Absol ute Auto Analytics Inc" eps="3"

cl| querysub, ql, queryl

A left join of the tables “window” and “symbol”, by the field “symbol” asjoin condition.

The TQL joins, even in the multithreaded mode, are still implemented internally as LookupJoin, driven only by the main
flow of the query. So the changes to the joined dimension tables will not update the query results, and will be visible only
when a change on the main flow picks them up, potentially creating inconsistenciesin the output. Thisiswrong, but fixing
it presents complexities that I've |left alone until some later time.

c1| d, wi ndow, OP_I NSERT, 2, ABC, 13, 100

cl|t, queryl, queryl OP_I NSERT id="2" synbol ="ABC' price="13" size="100"
name="ABC Cor p" eps="2"

cl| d, wi ndow, OP_I NSERT, 3, AAA, 11, 200

cl|t, queryl, queryl OP_I NSERT id="3" synbol ="AAA" price="11" size="200"
nane="Absol ute Auto Analytics Inc" eps="3"

Sending the data updates the results of the query.

cl| d, synbol , OP_DELETE, AAA, Absol ute Auto Analytics Inc,3.0
cl| d, synmbol , OP_I NSERT, AAA, Al cohol ic Abstract Aliens, 3.0

As described above, the modifications of the dimension table are not visible in the query directly.

c1| d, wi ndow, OP_DELETE, 1
cl|t,queryl, queryl OP_DELETE id="1" synbol =" AAA" price="12" size="100"
name="Al coholic Abstract Aliens" eps="3"

But an update on the main flow brings them up (an in this case inconsistently, the row getting deleted is not exactly the
same as the row inserted before).

cl| querysub, g2, query2,{read tabl e wi ndow}{join table synbol bylLeft
{synbol} type left}{join table synbol bylLeft {eps} type left

346 TQL, Triceps Trivial Query Language

rightFields {synmbol/synbol 2}}

cl|t, query2, query2 OP_I NSERT i d="2" synbol ="ABC' price="13" size="100"
name="ABC Corp" eps="2" synbol 2=" ABC"

cl|t, query2, query2 OP_I NSERT i d="2" synbol ="ABC' price="13" size="100"
name="ABC Cor p" eps="2" synbol 2="DEF"

cl|t, query2, query2 OP_I NSERT i d="3" synbol ="AAA" price="11" size="200"
name="Al coholic Abstract Aliens" eps="3" synbol 2=" AAA"

cl| querysub, g2, query2

Thisisamore complicated query, involving two joins, with the same dimension table “symbol”. The second join by “eps’
makes no real -world sense whatsoever but it's interesting from the technical perspective: if you check the table type of this
table at the start of the section, you'll find that it has no index on the field “eps’. The join adds this index on demand!

The way it works, al the dimension tables are copied into the client's writer thread, created from the table types exported
by the core logic throuhg the output nexus. (And if atableisused in the same query twice, it's currently also copied twice).
This provides a nice opportunity to amend the table type by adding any necessary secondary index before creating the
table, and TQL makes agood use of it.

17.6. Internals of a TQL join

The TQL implementation provides interesting examples of the sophisticated Triceps usage. Remember, it isn't somehow
specia or monolothic with the rest of Triceps. It uses the normal triceps APl and anyone can write asimilar language layer
from scratch. The codeislocatedinper |/ Tri ceps/ i b/ Tri ceps/ X/ Dunbd i ent. pm

The most complex operation implemented in TQL is the join in the multi-threaded server. It requires copying of multiple
tables from the core logic thread to the client thread that executes the join, and rebuilding them in the new thread, possibly
with the automatically added indexes.

It all startsin the Tql initialization method. In the multithreaded mode it builds the nexuses for communication. I'll skip
the input nexus (it's straightforward) and show the building of only the output and request-dump nexuses:

row type for dunp requests and responses
ny $rtRequest = Triceps:: RowlType- >new(
client => "string", #requesting client
id=>"string", # request id
name => "string", # the table nane, for convenience of requestor
cmd => "string", # for conveni ence of requestor, the command that it is executing

)

The request row type is used by the client writer thread to request the table dumps from the core logic, and to get back
the notifications about the dumps.

build the output side

for (nmy $i = 0; $i <= $#{$self->{tables}}; $i++) {
ny $nane = $sel f->{tabl eNanes}[$i];
ny $table = $sel f->{tables}[$i];

push @ abtypes, $nane, $tabl e->get Type()->copyFundanental ();

push @abels, "t.out." . $name, $tabl e->get QutputLabel ();
push @abels, "t.dunp." . $nane, $table->getDunpLabel ();
}
push @abels, "control", $rtControl; # pass-through fromin to out

push @ abel s, "begi nDunp", $rtRequest; # framing for the table dunps
push @ abel s, "endDunp", $rtRequest;

$sel f->{faQut} = $owner - >nmakeNexus(
name => $sel f->{nxprefix} . "out",
labels => [@abels],
tabl eTypes => [@abtypes],

Internals of a TQL join 347

import => "witer",
)
$sel f->{ begi nDunp} = $sel f->{falut}->get Label ("begi nDump");
$sel f->{endDump} = $sel f->{faCut}->get Label ("endDump");

On the output side each table is represented by 3 elements:

* itsfundamental table type (stripped down to the primary index);

* itsoutput label for normal updates,

* itsdump label for the responses to the dump requests.

There aso are the “beginDump” and “endDump” labels that frame each response to a dump request.

Therow type $rt Cont r ol and label “control” are used to pass the commands from the client reader to client writer, but
its exact contentsis not important here. All the magic happensin the client writer thread. The reader thread just passes the
commands to the writer thread, and then the writer thread controls the parsing and processing of the commands.

The dump request nexusis built in asimilar way:

build the dunp requests, will be coming from bel ow
undef @ abel s;
for (ny $i = 0; $i <= $#{$self->{tables}}; S$i++) {
ny $name = $sel f->{tabl eNanes}[$i];
ny $table = $sel f->{tables}[$i];

push @abels, "t.rqdunp." . $nane, $rtRequest;

}
$sel f->{faRgbunmp} = $owner - >makeNexus(
name => $sel f->{nxprefix} . "rqdunmp",
labels => [@abels],
reverse => 1, # avoids naking a | oop, and gives priority
i mport => "reader",
)
tie together the | abels
for (ny $i = 0; $i <= $#{$self->{tables}}; S$i++) {
ny $name = $sel f->{tabl eNanes}[$i];
ny $table = $self->{tables}[$i];

$sel f->{f aRqDunp} - >get Label ("t.rqdunp."” . $nane) - >makeChai ned(
$sel f->{nxprefix} . "rqdunp." . $nane, undef,

\ & dunpTabl e, $self, $table
)
}

Each table has alabel created for requesting its contents. The dumps are executed in the function _dumpTable:

sub _dunpTable # ($l abel, $rowop, $self, S$table)

my ($label, $rop, $self, $table) = @;
my $unit = $l abel ->get Unit();
pass through the client id to the dunp
$uni t - >cal | ($sel f - >{begi nDunp} - >adopt ($rop)) ;
$t abl e- >dunpAl | () ;
$uni t->cal | ($sel f - >{ endDunp} - >adopt ($rop)) ;
$sel f->{faQut}->flushWiter();

}

The data gets framed around by the copies of the original request sent to the labels “beginDump” and “endDump”. This
helps the client writer thread keep track of its current spot. The flushing of the writer is not strictly needed. Just in case if

348 TQL, Triceps Trivial Query Language

multiple dump requests are received in a single tray, the flush breaks up the responses into a separate tray for each dump,
keeping the size of the trays lower. Not that this situation could actually happen yet.

This part taken care of, let's jump around and see how the client writer thread processes a “ querysub” command:

} elsif ($cnd eq "querysub") {

if ($ideq"" || exists $queries{$id}) {

print O Shut ($app, $fragnent, $sock,

"error,$id, Duplicate id '$id : query ids nust be unique,bad_id, $id\n");

next ;

}

ny $ctx = conpil eQuery(
gid => $id,

gnane => $args[0],
text => $args[1],
SubError => sub {

chonp $_[2];
$[2] =~ s/\n/\\n/g; # no real newines in the output
$[2] =~ s/,/;/g; # no confusing commas in the output

print Or Shut ($app, $fragnent, $sock,
H
faQut => $faQut,
faRqDunp => $f aRqDunp,
subPrint => sub {
print Or Shut ($app, $fragnent, $sock,
I8
);

join(",", @), "\n");

if ($ctx) { # otherwise the error is already reported

$queri es{$id} = $ctx;
&$r unNext Request ($ct x) ;
}
}

The query id is used to keep track of the outstanding queries, so the code makes sure that it's unique. This is the origin

of the duplicate id error that was shown before.

The bulk of the work is done in the method compi | eQuer y() . Its arguments supply the details of the query and also
provide the closures for the functionality that differs between the single-threaded and multi-threaded versions. The option
“subError” is used to send the errors to the client, and “subPrint” is used to send the output to the client, it gets used for

building the labels in the “print” command of the query.

conpi | eQuery() returns the query context, which contains a compiled sub-model that executes the query and a set
of requests that tell the writer how to connect the query to the incoming data. Or on error it reports the error using the
closure from the option “subError” and returns an undef . If the compilation succeeded, the writer thread remembers the
guery and starts the asynchronous execution of the requests. The requests are the data dump requests to be sent back to the
application core thread. More about the requests later, now let's look at the query compilation and context.

The context is created in conpi | eQuer y() thusly:

nmy $ctx = {};
$ct x->{qi d}

= $opt s->{qi d};
$ct x->{gnane} =

$opt s- >{ gnane} ;

.. skipped the parts related to single-threadde TQL

$ctx->{faQut} = $opts->{faQut};

$ct x- >{ f aRgDunp}
$ct x->{subPrint}
$ct x- >{request s}

= $opt s- >{f aRqDunp};
$opt s- >{subPrint};
[T; # dunp and subscribe requests that will

$ctx->{copyTabl es} = []; # the tables created in this query

(have to keep references to the tables or they wll

run the pipeline

di sappear)

Internals of a TQL join

349

The query will be built in a separate unit

$ctx->{u} = Triceps::Unit->new $opts->{nxprefix} . "${q}.unit");

$ctx->{prev} = undef; # will contain the output of the previous conmand in the pipeline
$ctx->{id} = 0; # a unique id for auto-generated objects

deletion of the context will cause the unit init to clean

$ct x->{cl eaner} = $ct x->{u}->naked earingTrigger();

It has some parts common and some parts differing for the single- and multi-threaded varieties, here I've skipped over the
single-threaded parts.

One element that isleft undefined hereis$ct x- >{ pr ev} . It'sthelabel created as the output of the previous stage of the
query pipeline. As each command in the pipeline builds its piece of processing, it chainsitslogic from $ct x- >{ pr ev}

and leavesitsresult label in$ct x- >{ next } . Thenconpi | eQuer y() movesnext topr ev and callsthe compilation
of the next command in the pipeline. The only command that accepts an undefined pr ev (and it must be undefined for
it) is“read” which reads the table at the start of the pipeline.

$ct x- >{ copyTabl es} aso has an important point behind it. When you create alabel, it's OK to discard the original
reference after you chain the label into the logic, that chaining will keep a reference, and the label will stay alive. Not so
with atable: if you create a table, then chain itsinput label and drop the reference to atable, the table will be discarded.
When the input |abel would try to send any datato thetable, it will die. So it'simportant to keep the direct table references,
and that's what this array isfor.

$ct x- >{i d} isused to generate the unique names for the objects built in this context.

Each query is built in its own unit. Thisis convenient, after the query is done or the compilation encounters an error, the
unit with its whole contents can be easily discarded. The clearing trigger placed in the context makes sure that the unit
gets properly cleared and discarded.

Next goes the compilation of the join query command, I'll go through it in chunks.

sub _tqglJoin # ($ctx, @rgs)
{
ny $ctx = shift;
die "The join comrmand may not be used at the start of a pipeline.\n"
unl ess (defined($ctx->{prev}));
ny $opts = {};
&Triceps:: Opt::parse("join", $opts, {
table => [undef, \&Triceps:: Opt::ck_nandatory],
rightldxPath => [undef, undef],
by => [undef, undef],
byLeft => [undef, undef],
leftFields => [undef, undef],
rightFields => [undef, undef],
type => ["inner", undef],

}, @)

ny $tabnanme = bunescape($opts->{table});
ny $unit = $ctx->{u};
ny $table;

&Triceps:: Opt::checkMutual | yExcl usive("join", 1, "by", $opts->{by}, "byLeft", S$opts-
>{byLeft});

ny $by = split_braced_final ($opts->{by});

ny $bylLeft = split_braced_final ($opts->{byLeft});

ny $rightl dxPat h;

if (defined $opts->{rightldxPath}) { # propagate the undef
$rightldxPath = split_braced_final ($opts->{rightldxPath});

}

350 TQL, Triceps Trivial Query Language

It starts by parsing the options and converting them to the internal representation, removing the braced quotes.

1f we were to use a JoinTwo (which is nore correct), the data

incom ng through the query would have to be put into a table too.

And that requires finding the primary key for the data.

| suppose, after the sequence ids for the rows woul d get worked

out, that would provide the easy default prinmary key.

if ($ctx->{faQut}) {
Potentially, the tables might be reused between nultiple joins
in the query if the required keys match. But for now keep things
sinpler by creating a new table fromscratch each tine.

ny $tt = eval {
copy to avoid adding an index to the original type
$ct x->{falQut}->i npTabl eType($t abnane) - >copy();

b

die ("Join found no such table '$tabnane'\n") unless ($tt);

if (!defined $rightldxPath) {
determ ne or add the index automatically
my @wr kby;
if (defined $byLeft) { # need to translate
my @eftfld = $ct x->{prev}->get RowType() - >get Fi el dNames() ;
@wrkby = &Triceps::Fields::filterToPairs("Join option 'byLeft'",

\@eftfld, [@byLeft, "!.*" 1);
} else {
@wr kby = @bby;

}

nmy @ dxkeys; # extract the keys for the right side table
for (my $i = 1; $i <= $#workby; $i+= 2) {
push @ dxkeys, $workby[$i];
}
$rightldxPath = [$tt->fi ndO Addl ndex(@ dxkeys) 1;
}

build the table fromthe type

$tt->initialize();

$tabl e = $ct x->{u}->makeTabl e($tt, "tab" . $ctx->{id} . $tabnane);
push @ $ct x->{copyTabl es}}, $table;

build the request that fills the table with data and then
keeps it up to date;
the table has to be filled before the query's main flow starts,
so put the request at the front
& makeQunpsub($ct x, $tabname, 1, $tabl e->get ! nput Label ());
} else {
die ("Join found no such table '$tabnane'\n")
unl ess (exists $ctx->{tabl es}{$tabnane});
$tabl e = $ct x->{t abl es}{$t abnane};
}

The presence of $ct x- >{ f aOut } meansthat the query is compiled in the multithreaded context.

The command handlers, including the join command handler, may freely die, and the error messages will be caught by
conpi | eQuery() and nicely (at least, sort-of) reported back to the user.

If an explicit “rightldxPath” option was not requested, it gets found or added automatically. On the way there the index
fields need to be determined. Which can be specified either as the explicit field pairs in the option “by” or as the name
trandlation syntax in the option “byLeft”. If we've got a“byLeft”, first it gets trandated to the same format as “by”, and
then the right-side fiel ds are extracted from the format of “by”. After that $t t - >f i ndOr Addl ndex () takescareof all

Internals of a TQL join 351

the heavy lifting. It either finds a matching index type in the table type or creates a new one from the specified fields, and
either way returnsthe index path (an invalid field will make it confess).

Y ou might wonder, how come the explicit “rightldxPath” option is not checked in any way? It will be checked later by
LookupJoi n() , so not much point in doing the check twice.

After that thetableis created in a straightforward way, and rememebered in $ct x- >{ copyTabl es} . And the requests
list gets prepended with a request to dump and subscribe to this tablein _makeQdunpsub() . I'll get back to that, for
now let's finish up with _t gl Joi n() .

nmy $islLeft = 0; # default for inner join
ny $type = $opts->{type};
if ($type eq "inner") {
al ready default
} elsif ($type eq "left") {

$i sLeft = 1;
} else {
di e "Unsupported val ue '$type' of option 'type .\n"

}

ny $leftFields = split_braced_final ($opts->{leftFields});
ny $rightFields = split_braced_final ($opts->{rightFields});

ny $join = Triceps::LookupJoi n->new(
nane => "join" . $ctx->{id},
unit => $unit,
| eft FromLabel => $ctx->{prev},
ri ght Tabl e => $tabl e,
ri ghtldxPath => $rightldxPath,
| eft Fiel ds => $| eftFi el ds,
ri ght Fields => $rightFields,
by => $by,
byLeft => $byLeft,
isLeft => $isLeft,
fiel dsDropRi ght Key => 1,

);

$ctx->{next} = $j oi n->get Qut put Label ();
}

The rest of the options get parsed, and then all the collected data gets forwarded to the LookupJoin constructor. Finally
thenext label isassigned from thejoin's result.

Now jumping to the _makeQdunpsub() . It's used by both the “read” and “join” query commands to initiate the joins
and subscriptions.

sub _makeQdunpsub # ($ctx, $tabnane, [$front, $I bNext])
{

ny $ctx = shift;

ny $tabname = shift;

ny $front = shift;
ny $l bNext = shift;
ny
ny

$unit = $ctx->{u};

$lbrq = eval {
$ct x- >{f aRqDunp} - >get Label ("t. rqdunp. $t abnane") ;

—

ny $lbsrc = eval {
$ct x->{faCut} - >get Label ("t. out. $t abnanme");

b

352 TQL, Triceps Trivial Query Language

die ("Found no such table '$tabname'\n") unless ($lbrq & $l bsrc);

conpute the binding for the data dunps, that would be a cross-unit
binding to the original faQut but it's OK
ny $fretQut = $ctx->{faQut}->get FnRet urn();
ny $dunpnane = "t.dunp. $t abname";
the dunp and foll owi ng subscription data will nmerge on this |abel
if (!defined $l bNext) {

$l bNext = $uni t - >makeDurmyLabel (

$l bsrc- >get RowType(), "Ib" . $ctx->{id} . "out_$tabnanme");

}

ny $bi ndDunp = Tri ceps: : FnBi ndi ng- >new(
on => $fretCut,

nane => "bind" . $ctx->{id} . "dunp",
| abel s => [$dunpnane => $l bNext],
);

First it finds all the proper labels. The label $I bNext will accept the merged dump contents and the following subscrip-
tion, and it might be either auto-generated or received as an argument. A join will pass it as an argument, set to $t a-
bl e- >get | nput Label (), soal the data goes to the copied table.

The binding is used to receive the dump. It's a bit of an optimization. Remember, the dump responses are sent to al the
clients. Whenever any client requests adump, all the clients will get the response. A client finds that the incoming dump
is destined for it by processing the “beginDump” label. If it contains this client's name, the dump is destined here, and the
client reacts by pushing the appropriate binding onto the facet's FnReturn, and the data flows. The matching “endDump”
label then pops the binding and the data stops flowing. The binding allows to avoid checking every rowop for whether it's
supposed to be accepted and if yes then where exactly (rememeber, the same table may be dumped independently multiple
times by multiple queries). Just check once at the start of the bundle and then let the data flow in bulk.

qdunpsub:
* label where to send the dunp request to
* source output |label, fromwhich a subscription will be set up
at the end of the dunp
* target label in the query that will be tied to the source | abel
* binding to be used during the dunp, which also directs the data
to the same target | abel
ny $request = ["qdumpsub", $lbrq, $lbsrc, $IbNext, $bindDunp];
if ($front) {
unshift @ $ctx->{requests}}, $request;
} else {
push @ $ct x->{requests}}, $request;

return $l bNext ;
}

Finally, the created bits and pieces get packaged into a request and added to the list of requests in the query context. The
last tricky part is that the request can be added at the back or the front of the list. The “normal” way isto add at the back,
however the dimension tables for the joins have to be populated before the main data flow of the query starts. So for them
the argument $f r ont isset to 1, and they get added at the front.

Now jumping back to the writer thread logic, after it called conpi | eQuer y(), it startsthe query execution by calling &
$r unNext Request () . Which is a closure function defined inside the client writer thread function, and knows how to
send the dump reguests we've just seen created to the core logic.

The requests froma query context get sent one by one, and
after one is done, the next is sent until they all are done.
ny $runNext Request = sub { # ($ctx)

ny $ctx = shift;

ny $requests = $ctx->{requests};

Internals of a TQL join 353

undef $ctx->{curRequest}; # clear the info of the previous request
ny $r = shift @requests;
if (!defined $r) {
all done, now just need to punp the data through
print Or Shut ($app, $fragnment, $sock,
"querysub, $ct x- >{qi d}, $ct x- >{gnane}\ n");
return;

}

First it clears the information about the previous request, if any. Thisfunction will be called after each request, to send the
next one, so on all its calls except the first one of a query it will have something to clear.

Then it checks if al the requests are already done. If so, it sends the query confirmation to the client socket and returns.
The subscription part of the query will continue running on its own.

$ct x->{curRequest} = $r; # renenber until conpleted
ny $cnd = $$r[0];
if ($cnd eq "qgdunpsub") {
qdunpsub:
* | abel where to send the dunp request to
* source output label, fromwhich a subscription will be set up
at the end of the dunp
* target label in the query that will be tied to the source | abel
* binding to be used during the dunp, which also directs the data
to the sanme target | abel
nmy $lbrq = $$r[1];
this code very specifically ignores %unp, doing its requests
independently for each query, and show ng off another way to
do things
print "DBG next request {" . $ctx->{gnane} . "} qdunpsub " . $I brg->get Nane()
"\'n";
$uni t - >makeHashCal | ($l brg, "OP_I NSERT",
client => $fragment, id => $ctx->{qid}, name => $ctx->{gname}, crmd => $crd);

HHHHHH

} else {
print Or Shut ($app, $fragment, $sock,
"error,", $ctx->{qgid}, ",Internal error: unknown request '$cnd',internal,", $cnd,
II\ nll);

$ctx->{requests} = [];
undef $ct x->{cur Request};

and this will leave the query partially initialized,
but it should never happen
return;

}
}s

The request data might vary by the command. If the command is * qdumpsub”, the request gets trandlated to a rowop sent
through the nexus to the dump request label in the core logic.

And acatch-all just in case if the query compiler ever decides to produce an invalid request.

Next goes the handling of the dump labels (again, this gets set up during the build of the client reader threads, and then the
nature is left to run its course, reacting to the rowops as they comein). It gets set up in the writer thread function:

$f aQut - >get Label (" begi nDunmp") - >makeChai ned(" | bBegi nDunp", undef, sub {
ny $row = $_[1] ->get Row();
ny ($client, $id, $nane, $cnd) = $row >toArray();
return unless ($client eq $fragnent);
if ($cnmd eq "qdunpsub") {
return unl ess(exists $queries{$id});
ny $ctx = $queries{$id};
$fret Qut - >push($ct x->{cur Request}[4]); # the binding for the dunp

354 TQL, Triceps Trivial Query Language

} else {
return unl ess (exists $dunps{$nane});
print Or Shut ($app, $fragnment, $sock,
"startdunp, $i d, $nane\ n");
$f r et Qut - >push($bi ndDunp) ;
}
1)

As described before, it checks if thisis the destination client, and if there is an active request with thisid, then it pushes
the appropriate binding.

The handling of the end of transaction also gets set up in the writer thread function:

$f aQut - >get Label (" endDunp") - >makeChai ned(" 1 bEndDunp", undef, sub {
nmy $row = $ [1]->get Row();
ny ($client, $id, $nane, $cnd) = $row >toArray();
return unless ($client eq $fragnent);

if ($cnd eq "qdunpsub") {
return unl ess(exists $queries{$id});
ny $ctx = $queries{$id};
$fret Qut - >pop($ct x->{curRequest }[4]); # the binding for the dunp
and chain together all the foll ow ng updates
$ct x- >{ cur Request } [2] - >makeChai ned(
"gsub$id." . $ctx->{curRequest}[3]->get Nanme(), undef,
sub {
a cross-unit call
$ [2]->call ($_[3]->adopt ($_[1]));
},
$ct x->{u}, $ctx->{curRequest}[3]
)

&S$r unNext Request ($ct x) ;
} else {
.. skipped the handling of dunp/dunpsub

}
1)

Same as the “beginDump”, it checks if thisis the right client, and if it has an outstanding dump request, then pops the
binding. After the dump is completed, the subscription has to be set up, so it sets up alabel that forwards the normal output
of this table to the label specified in the request. Since each query is defined in its own unit, this forwarding is done as
across-unit call.

And then the next request of this query can be started until they all are done. And that'sit, the end of the example.

Internals of a TQL join 355

356

Chapter 18. Performance

Obviously, the performance depends on the machine on which Triceps runs. One of the Perl unit tests, t / Per f . t allows
you to measure the Triceps performace on your own machine. By default it runs only one thousand iterations, to be fast
and not delay the run of the full tests suite. But the number can be increased by setting an environment variable, such as:

$ TRI CEPS_PERF_COUNT=100000 perl t/Perf.t
Per f ormance test, 100000 iterations, real tine.
Enpty Perl |oop 0.006801 s, 14702927.05 per second.
Enpty Perl function of 5 args 0.031918 s, 3133046.99 per second.
Enpty Perl function of 10 args 0.027418 s, 3647284.30 per second.
Row creation fromarray and destruction 0.277232 s, 360708.19 per second.
Row creation fromhash and destruction 0.498189 s, 200727.04 per second.
Rowop creation and destruction 0.155996 s, 641043.69 per second.
Calling a dummy | abel 0.098480 s, 1015437.21 per second.
Calling a chained dummy | abel 0.110546 s, 904601.83 per second.
Pure chained call 0.012066 s, 8287664.25 per second.
Calling a Perl |abel 0.512559 s, 195099.61 per second.
Row handl e creation and destruction 0.195778 s, 510781. 66 per second.
Repeated table insert (single hashed idx, direct) 0.772934 s, 129377.12 per second.
Repeated table insert (single hashed idx, direct & Perl construct) 1.109781 s, 90107.89
per second.
RowHandl e creation overhead in Perl 0.336847 s, 296871. 05 per second.
Repeated table insert (single sorted idx, direct) 2.122350 s, 47117.59 per second.
Repeated table insert (single hashed idx, call) 0.867846 s, 115227.88 per second.
Tabl e insert makeRowArray (single hashed idx, direct) 1.224588 s, 81660.14 per second.
Excl udi ng makeRowArray 0.947355 s, 105557.02 per second.
Tabl e insert makeRowArray (double hashed idx, direct) 1.443053 s, 69297.51 per second.
Excl udi ng makeRowArray 1.165821 s, 85776.47 per second.
Over head of second index 0.218466 s, 457738.04 per second.
Tabl e insert makeRowArray (single sorted idx, direct) 29.880962 s, 3346.61 per second.
Excl udi ng makeRowArray 29. 603730 s, 3377.95 per second.
Tabl e |1 ookup (single hashed idx) 0.287407 s, 347938. 44 per second.
Tabl e |1 ookup (single sorted idx) 9.160540 s, 10916.39 per second.
Lookup join (single hashed idx) 3.940388 s, 25378.21 per second.
Nexus pass (1 row flush) 0.578993 s, 172713.78 per second.
Nexus pass (10 rows/flush) 2.266709 s, 441168.31 per row per second.
Over head of each row 0.187524 s, 533265.07 per second.
Over head of flush 0.391469 s, 255448.33 per second.

An important caveat, the test is of the Perl interface, so it includes all the overhead of constructing the Perl objects. I've
tried to structure it so that some of the underlying performance can be deduced, but it's still approximate. | haven't done
the performance testing of just the underlying C++ implementation yet, it will be better.

The computations are done with the real elapsed time, so if the machineis not idle, the time of the other processes will get
still counted against the tests, and the results will show slower than they redlly are.

The numbers above are from my old-ish laptop (dual-CPU Intel Core2 T9900 3GHz). The time in seconds printed for
each value is for the whole test loop of 100K iterations. The “per second” number shows the opposite, how many loop
iterations were done per second.

I've had an opportunity to run the performance tests on a few more laptops. Al of the same Core2 generation, but with
the different CPU frequencies. The 2GHz version showed expectedly an about 30% lower performance proportionally. A
2.2GHz CPU also showed an about proportional change, except for the inter-thread communication through the nexus, it
went down more than proportional. I'm not sure, what was up with the 2.2GHz CPU, maybe the timing worked out just
wrong to add more overhead.

Here is the row-by-row description of the measurements:

357

Performance test, 100000 iterations, real tine.

Thefirst thing it printsisthe iteration count, to set the expectations for the run length and precision. The shorter runs tend
to include more randomness.

Enmpty Perl | oop 0.006801 s, 14702927.05 per second.
Enmpty Perl function of 5 args 0.031918 s, 3133046.99 per second.
Enmpty Perl function of 10 args 0.027418 s, 3647284.30 per second.

A calibration to see, how much overhead is added by the execution of the loop itself. Asit turns out, not much. The Perl
function calls add more but still don't dominate the numbers.

Row creation fromarray and destruction 0.277232 s, 360708.19 per second.
The makeRowAr r ay () for arow of 5 fields. Each created row gets destroyed before the next one gets created.

Row creation fromhash and destruction 0.498189 s, 200727.04 per second.

The makeRowHash() for arow of 5fields.

Rowop creation and destruction 0.155996 s, 641043.69 per second.

The makeRowop() from an existing row. Same thing, each rowop gets destroyed before constructing the next one.
Calling a dummy | abel 0.098480 s, 1015437.21 per second.

Repeated calls of adummy label with the same rowop object. This can be thought of as the basic overhead of a C++ label
call, with alimited amount (25-30% or so) of the Perl overhead mixed in.

Calling a chained dumry | abel 0.110546 s, 904601.83 per second.
Pure chained call 0.012066 s, 8287664.25 per second.

Repeated calls of a dummy label that has another dummy label chained to it. The “pure’ part is the difference from the
previous case that gets added by appending another chained dummy label.

Calling a Perl |abel 0.512559 s, 195099.61 per second.

Repeated calls of a Perl label with the same rowop object. The Perl label has an empty sub but that empty sub still gets
executed, along with all the support functionality.

Row handl e creation and destruction 0.195778 s, 510781. 66 per second.

The creation of atable's row handle from asingle row, including the creation of the Perl wrapper for the row handle object.

Repeated table insert (single hashed idx, direct) 0.772934 s, 129377.12 per second.

Insert of the same row into atable. Since the row isthe same, it keeps replacing the previous one, and the table size stays
at 1row. Thecodeis$t Si ngl eHashed- >i nsert ($r owl) . Even though the row isthe same, anew row handle gets
constructed for it every time by thetable. “ Single hashed idx” meansthat thetable hasasingle Hashed index, onani nt 32
field. “Direct” meansthe directi nsert () cal, asopposed to using the table's input label.

Repeated table insert (single hashed idx, direct & Perl construct) 1.109781 s, 90107.89
per second.
RowHandl e creation overhead in Perl 0.336847 s, 296871.05 per second.

The same, only the row handles are constructed in Perl before inserting them: $tSingle-
Hashed- >i nsert ($t Si ngl eHashed- >makeRowHandl e($r owl)) . And the second line shows that the over-
head of wrapping the row handles for Perl is pretty noticeable (it's the difference from the previous test case).

Repeated table insert (single sorted idx, direct) 2.122350 s, 47117.59 per second.

The same thing, only for atable that uses a Sorted index that executes a Perl comparison on the same i nt 32 field. As
you can see, it gets amost 3 times slower.

358 Performance

Repeated table insert (single hashed idx, call) 0.867846 s, 115227.88 per second.
The same thing, again the table with a single Hashed index, but this time by sending the rowops to its input label.

Tabl e insert makeRowArray (single hashed idx, direct) 1.224588 s, 81660.14 per second.
Excl udi ng makeRowArray 0.947355 s, 105557.02 per second.

Now the different rows get inserted into the table, each row having adifferent key. At the end of thistest the table contains
100K rows (or however many were requested by the environment variable). Naturally, this is slower than the repeated
insertions of the same row, since the tree of the table'sindex becomes deeper and requires more comparisons and rebal anc-
ing. This performance will be lower in the tests with more rows, since the index will become deeper and will create more
overhead. Since the rows are al different, they are created on the fly, so this row creation overhead needs to be excluded
to get the actual Table's performance.

Tabl e insert makeRowArray (double hashed idx, direct) 1.443053 s, 69297.51 per second.
Excl udi ng makeRowArray 1.165821 s, 85776.47 per second.
Over head of second index 0.218466 s, 457738.04 per second.

Similar to previous one but on atable that has two Hashed indexes (both on the samei nt 32 field). The details here also
compute the overhead contributed by the second index.

Tabl e insert makeRowArray (single sorted idx, direct) 29.880962 s, 3346.61 per second.
Excl udi ng nmakeRowArray 29.603730 s, 3377.95 per second.

Similar but for a table with a Sorted index with a Perl expression. As you can see, with the makeRowArray overhead
excluded it's about 30 times slower (and it gets even worse for the larger row sets).

Tabl e | ookup (single hashed idx) 0.287407 s, 347938.44 per second.

Finding arow in atable of 100K (or however many iterations requested) rows by a hashed index.

Tabl e 1 ookup (single sorted idx) 9.160540 s, 10916. 39 per second.

Finding arow in atable of 100K (or however many iterations requested) rows by a Perl sorted index. Just like row insertion,
it's 30-odd times slower than a hashed index.

Lookup join (single hashed idx) 3.940388 s, 25378.21 per second.

Joins in the LookupJoin template (and the performance of the JoinTwo template will be the same, since it consists of
two LookupJoins). It performs essentialy the same table lookup, only with the added overhead of constructing the new
combined rows, and the general overhead of the extra Perl 1abel calls.

Nexus pass (1 row flush) 0.578993 s, 172713.78 per second.

Nexus pass (10 rows/flush) 2.266709 s, 441168.31 per row per second.
Over head of each row 0.187524 s, 533265. 07 per second.
Over head of flush 0.391469 s, 255448. 33 per second.

The passing of the rows between threads through a Nexus. The time al so includes the draining and stopping of the app, so
it'salittle pessimistic, and gets more pessimistic for the short runs. Both cases pass 100K of transactions, so the second one
passes 10 times more rows. The difference in performance of different transaction sizes allows to compute the overhead
of the transaction passing (i.e. flushes) versus the overhead of adding extra rows to transactions.

359

360

Chapter 19. Triceps Perl APl Reference

There are two distinct ways to descibe something, a“guide” and a“reference”. Most of this manual is a guide: it goes by
describing things by examples, together with the idioms of their usage, and with the explanation of the internal structure
and underlying reasons. However if you aready know how things work and need to look up the trivia, a reference with
its short and dry descriptions comes handy. Besides, some methods of the classes essentially are the trivia, and there is
no point in making elaborate examples about them. The reference for the whole Perl APl is collected here, organized by
classes. Eventually it should be placed into the man pages aswell, but so far | haven't got around to do it.

Some of the classes are so fundamental that the guide sections about them were essentially of the reference type, with the
use being shown in al the examples of the manual. In such cases I'm not copying them here, instead please refer to the
relevant chapters:

Simplefield typesin Section 5.1: “ Simple types’ (p. 27) .
RowTypein Section 5.2: “Row types’ (p. 27) .

Row in Section 5.4: “Rows” (p. 30) .

Label in Chapter 6: “Labels and Row Operations’ (p. 33) .

Rowop in Section 6.4: “Row operations” (p. 36) .

19.1. Top-level functions reference

Thefunction Tri ceps: : now() issimilartoPerl ti me() but returnsthe current time as a floating point number, with
the fractional seconds:

$time = &Triceps: now();
Thistime format is used by afew Triceps methods, mostly in the multithreading support.

Thefunction Tri ceps: : w apf ess() takes care of wrapping the confessionsin the templates. It's very much like the
try/catch, only it has the hardcoded catch logic that adds the extra error information and then re-throws the exception.

Triceps::w apfess($nessage, $code);

$code isthecodeto executeinaneval , thetry part. $message isthe message that is prepended to the error if the code
confesses. The original message will be indented to create the nice-looking messages when the errors propagate up a chain
of nested wr apf ess() . The stack trace doesn't get indented or duplicated, it's preserved as-is during the propagation.

The goal of wr apf ess() isto makethe errors reported from the Triceps templates more user-friendly. When some part
of thetemplate's code generation fails, the error message that talks about the low-level details may be difficult to connect to
the error in teh template arguments. The wrapping allowsto prepend the high-level message about what template arguments
were wrong.

$nmessage may be either a string or a code reference, or areference to a scalar variable containing either. If it's a code
reference, it will be evaluated, and its result will be used as a string. The code as message can be useful if the message is
expensive to generate, and thusit would be generated only if an error is encountered. The referenceto ascalar can be used
to wrap the code into asinglewr apf ess but then replace the actual value to print as needed. This might be too flexible,
and it's not clear yet if the reference message is agood idea.

Examples of usage:

ny $result_rt = Triceps::wapfess
"$nmynane: Invalid result row type specification:",

361

sub { Triceps:: RowType->new(@owdef); };

ny $result_rt = Triceps::wapfess sub {
"$nynane: Invalid result row type specification:"

b,
sub { Triceps:: RowType->new(@owdef); };
ny S$eref;
return Triceps::w apfess \$eref,
sub {
$eref = "Bad argunment foo";

bui | dTenpl at eFr onfoo() ;
$eref = sub {

ny $bardunp = $argbar->dunp();

$bardump =~ s/ "/ / ny;

return "Bad argunent bar:\n bar val ue is:\n$bardunmp";
s
bui | dTenpl at eFronBar () ;

s
An example of produced error message:

Triceps::Fields::makeTransl ation: Invalid result row type specification:
Tri ceps:: RowType::new. incorrect specification:
duplicate field name 'f1' for fields 3 and 2
duplicate field name 'f2' for fields 4 and 1
Tri ceps: : RowType::new. The specification was: {
f2 => int32[]
fl1 => string
fl1 => string
f2 => fl oat 64[]
} at blib/lib/Triceps/Fi